Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Carderock Division

Naval Surface Warfare Center
Bethesda, Maryland 20817-5700

NSWCCD-26-TR-1998/xx October 1998

Total Ship Systems Directorate
Research and Development Report

Leading Edge Advanced Prototyping
For Ships (LEAPS):

LEAPS User’s Guide
Version 2.0

by
Richard T. Van Eseltine and Robert Ames

Distribution authorized to the Department of Defense and
DoD contractors only; critical technology; October 1998.
Other requests for this document shall be referred to the
Carderock Division, Naval Surface Warfare Center (Code 20)

DRAFT DRAFT

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

TABLE OF CONTENTS

TADIE OF CONIENTS ...ttt et e s e e e s s bt e e ssb bt e s nabe et e s s r e e e e nannee s 2
Table Of FIQUIES ... 7
T (oo [U Tt i o] o FA PP TP PPPRPR 8
== Tod (o o 11 T 1 8
ADOUL the LEAPS AICRItECIUIEeeiiiiiiiie e 8
System Requirements fOr LEAPS/IAPIooo it 9

L 1S3 1= L4 o PSSP 9
References, Help, TEChNICAl SUPPOIT........ooiiiiiiiiiiiie e 10
OVEIVIEW OF LEAPS ...ttt e e e e e s e e e e e e e s s et e e e e e e s s s nsstaa e eeeeeeanassttaneeeeeesannnnnnees 11
OVErVIeW Of PIIMAIY CIASSESvuiiiiiiiiie ittt sttt sttt e bt e e e nbb e e e e s snbeeeean 11
Overview of Geometry Object Structure (GOBS) ClaSSES......cccuuiiiiiiiiieiiiiiee it 11
ProduCt MOAE] VIBWSooiiiiiiieiiie ettt ettt et e e st e e e s nnreee e 12
]t E=T oIS @] o] [T ol £ ST TP PP PPTPT PP 13
Overview Of ULty CIaSSEScooviiiiiiiiieeeee e 15
GEUlING SEAMEA ... ————— 16
Defining and Designing Your Product MOAELuuuuiiimiiiiiiiiiiiiiiiiiiiiniiiiieieineeeneenennnennen. 16
Compiling Your Application Using the LEAPS AP......ccoooiiieeee e 17
Creating @ LEAPS Dat@basecoiuuiiiiiiiiiee ittt ettt 18
Management Of LEAPS ODJECESoiiiiiiiieiiiiii ettt ettt nibeee e 19
Managing & LEAPS Dat@bDasSe.........uuiiiiiiiiiiiiiiie ettt st 19
MEANAGING STUTIESeeiiiiiiie ettt ettt e e s st bt e e s abb e e s abae e e e nnbbeeeeaneee 19
Cre@tiNng @ STUAY ...ooeeeiie ettt ettt e s bt e aab e e s bt e e naneeas 19

LR L LA o = T (T Y28 19
(DTS 0] V1 o = U] (T Y28 19
Determining the EXIiSteNCe Of @ STUAY.........uuuuuiiiiiiiiiiiii e 19
Listing the Studies Managed by @ FaCtOry............cccuiuiiiiiiiiiiineneeeeeeneneneneanes 20

Y F= T = Vo[g ol @ o] g Tot=T o) K- J PP PP UUTTPPP 20
(O (=T V] oo - W o] o [o =T o | TP U PUPPTTPPPUPPRTP 20
RELIEVING 8 CONCEPL ..ttt ettt e et bt e e et bt e e s sbbe e e e s abbeeeesnnbeeaeaas 20
DESLrOYING 8 CONCEPL ...ttt ettt ettt e et b et e e et b et e e s abbe e e e e sbbeeeeannbeeeeaas 21
Determining the EXIiStence Of @ CONCEPLcoiuviiiiiiiiiii et 21
Listing the Concepts Contained iN & STUAY.........coiuiiiiiiiiieiiiiee e 21
Retrieving 8 CONCEPL'S SLIUCIUIEeiiiiiiiiie ittt e e ee e 21

Y =Yg oo [T gL S Tod =T P o 1 S PP TPPP PSR 21
CreatiNg @ SCENANOccoe e 22

R L[N o = S Yol =T o = U [22
(DTS 0]V o = WS Yot = F= [22
Determining the EXIiStence Of @ SCENAIIO.........uuuuiuiiiiiiiiiiiii e 22
Listing the Scenarios Contained iN @ STUAYuuuuuuiiiiiiiiii .. 22
MaNAGING COMPONENTScooiiuiiiiiiiiiie ettt et ettt e e b e e sbb e e e e sttt e e e aaabb e e e s aabbe e e s aabbeeesanbbeeesaneee 22
Creating @ COMPONENT........ciiiiiiie ittt ettt e s bt e rabb et e e sabe e e e e sabbe e e e anbbeeeesnnneeas 23
RetrieViNg @ COMPONENT ..ottt ettt e e s bt e e s sttt e e s abbe e e e s sbbeeeessnbeeeeaas 23
DeStroying @ COMPONENTcouuiiie ittt ettt ettt e e sttt e e s sbb e e e e s abbe e e e s sbbeeeessnbeeeeaa 23
Determining the Existence of @ COMPONENTcuiiiiiiiiiiiiiiie e 23
Listing the Components Contained iN @ CONCEPLccovuiiiiiiiiiee e 23
Retrieving @ COMPONENT'S STIUCTUIEuvuiiiiiiieiiiieie ittt e et e e e e e e sbbreeee e e e e e e aans 24
=TT 1o IS Y] (] 24
Creating @ SYSIEIM ... 24

LR L SNV 0o T S V2] =] o 24

(D TTSY o)V To T TS V2] =] o 24
Determining the EXIiStence Of @ SYSEM..........uuuiiiiiiiiiiiii e 24
Listing the Systems Contained iN & CONCEPL......cocuuiiiiiiiiiei i 25
MaNAGING CONNECLIONScciiiiiiii ittt ettt e et e e s aab bt e e s abb e e e e sabae e e s aabbeeesaneee 25

DRAFT 2 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Creating @ CONMNECTIONeiii ittt et e e b b e e e sab bt e e s sabb e e e e snnneeas 25
REtreVING 8 CONNECTION......coiuiiiie ittt sttt e et bt e e s rbbe e e e s nbbeeeessnbeeeeans 25
(D T=1SY 1 0) Y/ 0o Jt= W @ o 1T 1o o TR 25
Determining the EXxistence Of @ CONNECLON...........uuuuiuiiiiiiiiii .. 26
Listing the Connections Contained iN @ CONCEPL.......ccuiiiiiiiiiiiiiiiie e 26
[V E=TaT=To T aTo T o | = 1 o4 1 26
Creating @ DIagramMccoooe oo 26
LRI SAVZT 0o = T B 1=V | = o o 26
DESLrOYING 8 DIAGIAMeeiiiiiiiie ettt sttt e ettt e e st b et e e s abbe e e e s sbbeeeesabbeeeeaa 27
Determining the EXistence of @ DIAQIamcooiiuiiiiiiiiiii e 27
Listing the Diagrams Contained in @ CONCEPLcuvviiiiiiiiiiiiiiie et 27
Managing LEAPS GeOMEtry ODJECISuiiiiiiiiiiiiiiiee ettt 27
Cre@tiNng @ SUIMACEeiii ittt ettt e bt e sb b e e e sab b e e e snnaeeas 28
RELIEVING 8 SUIMACE ...ttt e e s nbb et e e s nbbeeeeeas 29
(DTS 0]V To = TS0 = T = 29
Determining the EXistence Of @ SUIMACEuuuiiiiiiiiiiii e 29
Listing the Surfaces Contained in @ STFUCIUIEuuuuuiuiuiuiuiiiiiiieiiiieieeenee——.. 29
Creating @ PCUIVE ... 30
RELHEVING @ PCUINVE ettt eaeae e aaea e s aaeaeaeneasnsnsssnsssnsnsnsnsnsnsnsnnnsnnnnns 31
(D 1TSY (0] Y/ To = TN o U | V7= T 31
Determining the EXIStENCE Of @ PCUINVE.......coiuiiiiiiiii e 31
Listing the Pcurves Contained in @ SIIUCIUE............eeiiiiiiiiiiiiie et 31
Creating @ PPOINT ...ttt 32
RELIEVING 8 PPOINT....ccoiiiiiiiiiiie ettt ettt e e s rbbe e e e s sbb e e e e s nnbeeeeeas 32
DESLIOYING 8 PPOINT. ..ottt sttt et e e s rbbe e e e s bt e e e s nbbeeeeea 32
Determining the EXistence Of @ PPOINT.........cooiiiiiiiii e 32
Listing the Ppoints Contained iN @ STIUCIUIE............uuiiiiiiiiiiiieie e 32
Creating @ COPOINL........ccoo i 33
REtHEVING @ COPOINTuuuiiiiitiiii e aeae e aaea e e eeeseeeaseansasssnsssnsnsnsasssnnnsnnnnnnnnns 33
(DTS 0] Y/ o = T @0] =01) 33
Determining the EXistence of @ COPOINt...........uuuiiiiiiii e 34
Listing the CoPoints Contained iN @ StrUCIUIEccoiiiiiiiiiiiie e 34
Creating AN EAQEveiii e 34
RELIHEVING 8N EAQE ...eiiiiiiiie ittt sttt ettt e ettt e e s bt e e e e s ntbeeeeeas 34
DeESLrOYING AN EAQE ..oooiiiiiie e 35
Determining the EXiStence of @n EAQEccoiviiiiiiiiiiiiiie ettt 35
Listing the Edges Contained in @ STIUCIUIEoccuviiiiiiiieiiiiie e 35
Creating @ COEAQEcoooe e 35
REtrEVING @ COEUQE.... . ittt aaea e ae e e s eeeaeaaneaessnsnsnensnsnsnsnsnnnnnsnnnnns 36
(D11 o) Y/ 0o Jt= T @] = Lo = 36
Determining the EXxistence Of @ COEAQE...... ... 36
Listing the CoEdges Contained iN @ StIUCIUIE...........uuuuuuruiuiuiiiiiiieieiiieiiineninenennnrea——.. 36
Creating AN EAQELOOPviiii ittt 36
RetrieViNg an EAQELOOP .. cooiiiiiiiiiii ettt ettt e bt e e st e e e s nbbeee e 37
DeStroying an EAGELOOP . .ooiuiiiieiiiiie ettt e s ee e 37
Determining the Existence of an EAQELOOPccovuiiiiiiiiiiiiiiiee e 37
Listing the EdgeLoops Contained iN @& SIIUCLUIEooueeiiiiiiiie it 37
(O LT L1 o To = = ot PP PP PRSPPI 38
LR L[NV o = T = o = 38
D11y 0]/ 0o = T = o = 38
Determining the EXIiStENCE Of @ FACE.........uuuuiiiiiiiiiiii e eneeeaenenee 38
Listing the Faces Contained iN @ StrUCLUIE............uuuuuuiuiuiiiiiiiiiiiiaieieeeerrre ... 38
Creating an OrientedClosedShell ..., 39
Retrieving an OrientedClOSEASEIL............uuiiiiii e arerarararane 39
Destroying an OrientedCloSEASNEll..........cooiiiiiiii e 39
Determining the Existence of an OrientedClosedShell............cccoiiiiiiiiiiiii e 39

DRAFT 3 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Listing the OrientedClosedShells Contained in @ StrUCLUIE..........ccueeeiiiiiiee i 40
Cre@ting @ SOlveeee ettt nabee s 40

L L TSNV o = T T 1T 40
(DTS 7)1 o = TS T T 41
Determining the EXistence Of @ SOld..............uuuiiiiiiiiiii e 41
Listing the Solids Contained iN @ StIUCLUIE...........uuuuuuuiiiiiiiiiiiiiieieirieee .. 41
Creating a TOPOIOGICAIVIEWueiiiiieiiiee et e e e e e e e e 41
Retrieving @ TOPOIOGICAIVIEW.ccciiiiiiiiieiee ettt e e e e reee e e e e e 42
Destroying a TOPOIOGICAIVIEW.ueiiiiiiiiie e ee e 42
Determining the Existence of a TOPOIOGICAIVIEWccueeiiiiiiiiiiiiiieiie e 42
Listing the TopologicalViews Contained in & StrUCUIecceeiiiiiieeiniiie e 42
Creating & COMMIONVIBWcciiuiiiieiiiiie ettt ettt e et e bt e s sb b e e e e aabb e e e e snbbeeeesanneeas 42
RetrieVing 8 COMMONVIBWoiiiiiiiie ittt ettt ettt e et et e e s rbbe e e e s sbbeeeessnbeeeeaas 43
DesStroying @ COMMONVIBWciiiiiiiieiiiiie e eiieee ettt ettt ettt e e sttt e e s sbb et e e s sbbeeeessbbeeeesnnbeeeeaa 43
Determining the Existence of @ COMMONVIEWuuuuuiuiiiuiuimiiiiiniiieiiieienene————.. 43
Listing the CommonViews Contained in @ StFUCIUIEuuuuuieieiiiiiniiiiiiieiniennenn. 43
Managing Materials for LEAPS ODJECESuuuuuiiiiiiiiiiiiiiiiiiiiiiiieieiisininiseeieeaeeeeensaenensnnnsnennnnnnnne 44
Creating a Material for a LEAPS ODjJecCt ..., 44
Retrieving a Material for a LEAPS ODJECL..........uuuuiiiiiiiiiiiiiiiiiiiiiiieiininieenennenenenenenenennnnnne 44
Destroying a Material for a LEAPS ODJECL..........uuuiiiiiiiiiiiiiiiiiienennaennenennnenenee 45
Determining the Existence of a Material for a LEAPS ObjecCt........cccoovviiiiiiiiiiiiiiiiiec e 45
Listing the Materials Managed by a LEAPS ODJECE..........cooviiiiiiiiiiiiiiee e 45
Creating a MaterialGroup for @ LEAPS ODJECLuuiiiiiiiiiiiiiiieiee e 45
Retrieving a MaterialGroup for @ LEAPS ODJECTccoiiiiiiiiiiiiiciiieiee e 46
Destroying a MaterialGroup for a LEAPS ODJECLcccoiuiiiiiiiiiiiiiiiiee e 46
Determining the Existence of a MaterialGroup for a LEAPS ODbjectccccccovvniiiiiiiiieannnnne 46
Listing the MaterialGroups Managed by a LEAPS ODJEeCt..........ccoooiiiiiiiiiiiiiiiiiiiiieiee e 46
Managing Properties for LEAPS ODJECLScooiiiiiiiiiiiie et 47
Creating a Property for 8@ LEAPS ODJECToooiiiiiiiie e 47
Retrieving a Property for a LEAPS ODJECT........oooiiiiiiiiiee e 47
Destroying a Property for @ LEAPS ODJECT........ooiiiiiiiiiee e 47
Determining the Existence of a Property for a LEAPS ODbject..........cccooviveiiiiiiiiiniiieeiiiieeee 48
Listing the Properties Managed by a LEAPS ODJECE..........coooiiiiiiiiiiiiiie e 48
Creating a PropertyGroup for & LEAPS ODJECEcvuiiiiiiiiiiiiiieiieee e 48
Retrieving a PropertyGroup for a LEAPS ODJECT........coouiiiiiiiiiiiiieie e 49
Destroying a PropertyGroup for a LEAPS ODJEC.......coouiiiiiiiiiiiiie e 49
Determining the Existence of a PropertyGroup for a LEAPS Object...........cccceveviiiiiiiniinnenne 49
Listing the PropertyGroups Managed by a LEAPS ODbjJeCtccooiiiiiiiiiiiiiiiiiiiieieeeeeeee 49
Determining the Contents Of LEAPS ODjJECES........uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiinieieinrsennernneenennnennnnnnnn.. 51
Determining the Contents of a LEAPS Database..............uuuuiuiuiiiiiiiiiiiiiiiiiiiiiiieinininennnnnn. 51
Determining the Contents of a LEAPS Study ObJECtuuuuuiuiiiiiiiiiiiiiiiiiiiiiiininininininnennnnennnn, 51
Determining the Concepts of a Study ODJECL.............oeiiiiiiiiiii e 51
Determining the Scenarios of a Study ObJECT..........eiiiiiiiiiiiii e 52
Determining the Properties of a Study ODJECToiiiiiiiiiiiii e 52
Determining the PropertyGroups of a Study OBJeCtcooociviiiiiiie e 53
Determining the Contents of a LEAPS Concept ODJECTccuuviiiiiiiiiiiiiiee e 53
Determining the Components of @ ConCept ODJECTeeviiiiiiiiiiiiiee e 53
Determining the Systems of @ Concept ODJECE..........cooiiiiiiiiiiii e 54
Determining the Properties of a Concept ODJECE ... 54
Determining the PropertyGroups of a Concept ODJECE........cc.uuiiiiiiiriiiiiieiee e 54
Retrieving @& CONCEPL'S SITUCTUIEooiiiiiieiei ettt ettt e e e e e e eee e e e e e e 55
Determining the Contents of a LEAPS Component ObJeCt...........cooiiiiiiiiiiieiiiiiiiieee e 55
Determining the Properties of a Component ObJEC..........oocuuiiiiiiiiiiiiiie e 55
Determining the PropertyGroups of a Component ODjJecCt...........cccoovviiiiiiiiiiiiiiiiieeee e 56
Retrieving @ COMPONENT'S SEIUCIUIEeiiiiiiiiie ittt e s nibeee e 56
Determining the Contents of a LEAPS System ODJECTcccuvviiiiiiiiiiiiiiee e 56

DRAFT 4 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Determining the Properties of a System ODJECTcooviiiiiiiiiiiiii e 56
Determining the PropertyGroups of a System ODJECEoccviiiiiiiiiiiiiiie e 57
Determining the Contents of a LEAPS Scenario ObJECtuuuuuiuiviiiiiiiiiiiiiiiiiiiiieininnnnnennnnnn. 57
Determining the Properties of a Scenario ODJECT ...t 57
Determining the PropertyGroups of a Scenario ODjJectcoeieiiiiiiiiiiiiiieeeeeee 58
Determining the Contents of a LEAPS Structure ODjJecCt............cuvviiiiiiiiiiiiiiiiiiiiiiiieienininnnnns 58
Determining the Properties of a Structure ODJECT........c.oooiiiiiiiiiiie e 59
Determining the PropertyGroups of a Structure ODjJect.............ooviiiriiiiieeee 59
Determining the Materials of a Structure ODJECE..........occiiiiiiiiiii e 59
Determining the MaterialGroups of a Structure ObJECt...........c..uvvvieeeiiiiee e 60
Determining the CommonViews of a Structure ODJECE..........c.eeviiiiiiiiiiiiie e 60
Determining the TopologicalViews of a Structure ObjJectccccceeeeviiciiiiiee e 61
Determining the Solids of a Structure ODJEC............ooiiiiiiiiiii e 61
Determining the OrientedClosedShells of a Structure ObJecCtccovvviiiiiiiiiii i 62
Determining the Faces of a Structure ODJECL.............uuiuiiiiiiiii e 62
Determining the EdgeLoops of a Structure ODJECt...........oooiiiiiiiiiiiiiiiiee e 63
Determining the CoEdges of a Structure ODJEC ... 63
Determining the Edges of a Structure ODJECE............uuiiiiiiiiiii e 63
Determining the CoPoints of @ Structure ODJECL............uuuuiiiiiiiiiiiii . 64
Determining the Ppoints of a Structure ODJECEcoiiiiiiiiiii e 64
Determining the Pcurves of a Structure ODJECTcooiiiiiiiiiiiii e 65
Determining the Surfaces of a Structure ODJECE.........coouiiiiiiiiiiiii e 65
Determining the Contents of a LEAPS CommonView ObJeCt........ccccevviviieiiiiiiie e 65
Determining the Properties of a CommonView ODJECE..........cueiviiiiiiiiiiiiiee e 66
Determining the PropertyGroups of a CommonView OBJecCt..........ccoovvviiiiiiieeeiiiiiiiiieee e 66
Determining the Materials of a CommonView ODJECt...........cccciiiiiiiiiiiiiiieans 67
Determining the MaterialGroups of a CommonView ODJeCt...........ccoouiiiiiiiiiiiiiiiiiiiiee e 67
Determining the CommonViews of a CommonView ODjJecCtcccccuvuiviiiiiiiiiniiiiiiiiinininnnnn, 67
Determining the TopologicalViews of a CommonView ObJecCtccccuuveeiiiiiiiiiiiiiiiieeeeeee 68
Determining the CommonViews that Use the CommonView Object...........ccccccvuvvnrnrninininnnnn. 68
Determining the Contents of a LEAPS TopologicalView Objectcceeeviiiiiiiiiii 69
Determining the Properties of a TopologicalView ObJecCt ... 69
Determining the PropertyGroups of a TopologicalView Object...........ccccvvvveeiiiicciiiiineeeeeens 70
Determining the Materials of a TopologicalView ObjJecCt...........cccoiiiiiiiiiiiii i 70
Determining the MaterialGroups of a TopologicalView Object.........ccccovveeiiiiiiiiiniiieeiniieeene 71
Determining the Leaps Object Type of a TopologicalView Objectccccceeevvviiiiiieiieeennnns 71
Determining the CommonViews that use the TopologicalView Objectccccovvveriiiieenenne 72
Determining the Contents of a LEAPS Solid OBJECtuuuiiiiiiiiiiiiiiiiieneenenees 72
Determining the Outershell of a Solid OBJECL.............uuiiiii s 72
Determining the Voids of @ Solid ODJECE............uuuiiiiiiiii e 73
Determining the TopologicalView that Represents the Solid Object.........ccccccooviiii. 73
Determining the Contents of a LEAPS OrientedClosedShell Objectcccccvvviviiiininniiininnnnn. 73
Determining the Orientation of an OrientedClosedShell Objectcccccvevviiiiiiiiiiieiiiieeee 74
Determining the Faces of an OrientedClosedShell Object ... 74
Determining the Solids that Use the OrientedClosedShell Objectcccooceeiiiiiiiniienens 74
Determining the Contents of a LEAPS Face ODJECTccoviiiiiiiiiiii e 75
Determining the Orientation of an Face ODJECTcoiuiiiiiiiiiiiiii e 75
Determining the Outer Loop of @ FaCe ODJECE.........eiiiiiiiiiiiiiie e 75
Determining the Inner Loops of @ Face ODJECL...........cciiiiiiiiiiiii e 75
Determining the OrientedClosedShells that Use the Face Objectccccccviviiiivinninininnnnn. 76
Determining the TopologicalView that Represents the Face Object.........ccccccooviiiiiieinnnns 76
Determining the Surface the Face ObJeCt IS ON ... 77
Determining the Contents of a LEAPS EdgeLoop ODjJecCt ... 77
Determining the Orientation of an EAgeL0o0p ObJECT.........oocuiiiiiiiiiiiiiieee e 77
Determining the Edges of an EAgeLO0Op ODJECLccooiiiiiiiiiiieiiiieiee e 77
Determining the Faces that Use the EdgeLoop ODJECEc.ceeiiiiiiiiiiiiiiiiec e 78

DRAFT 5 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Determining the Contents of a LEAPS Edge ODJECt.........ccooiiiiiiiiiiiiiii e 78
Determining the Start Point of an Edge ODJECt...........cooiiiiiiiiiiii e 78
Determining the End Point of an EAge ObJECL.............uuiiiiiiiiiiieenenenenens 79
Determining the Pcurve that the Edge Object LIES ON...........uuiuiiiiiiiiiiiiiiiiiiiiiiiiieineeenenenennn, 79
Determining the Surface that the Edge ODbject Li€S ONuuuiriviiiiiiiiiiiiiiiiiiinieieinenenennn. 79
Determining the CoEdge that the Edge Object Is A Part Of ..o, 79
Determining the EdgeLoops that Use the Edge ODJect............ueeviiiiiiiiiiiiiiiiiieeeeeeeee 80

Determining the Contents of a LEAPS CoEdge ODjJECtuuuuiiiiiiiiiiiiiiiiiiiiiiiiiininininineninnnnnens 80
Determining the Edges of & COEAQE ODJECT.......coiuiiiiiiiiiiiiiiiee e 80

Determining the Contents of a LEAPS Ppoint ODJECEcccuviiiiiiiiiiiiieeeee e 81
Determining the Edges the Ppoint Object Starts and ENdS.........cccccoovecviiiiiie e 81
Determining the Pcurve Obiject that the Ppoint Object LieS 0Nccoovvieeiiiiiieiiiiiieeieeeee 81
Determining the location of the PPoint ODJECtcooiiiiiiiiiiiii e 82
Determining the CoPoint that the Ppoint Object is @ Part of...........cccccoviiiiiiiieee 82

Determining the Contents of a LEAPS CoPOINt ODJECT...........uuuuiiiiiiiiiiiiiiiiiiiiiiiniinieenrennenenennne. 82
Determining the Ppoints of a CoPOoINt ODJECTiiiiiiiiiiii e 83
Determining the Cartesian location of the CoPoint ObjJectcccccuveiiiiiiiiiiiiiianns 83

Determining the Contents of a LEAPS Pcurve ODBJECEuuuiuiiiiiiiiiiiiiiiiiiiiiiinieininnnnnnnennnennn. 83
Determining the Surface that the Pcurve Object is Mapped 10..........ooccuiiieiiiiiiiiiiiiiiieeeeeee 83
Determining the Ppoints that are Mapped to a Pcurve Object ..., 84

Determining the Contents of a LEAPS Surface ObJecCtccvviiiiiiiiiiiiiiiee e 84
Determining the Pcurves that are Mapped to a Surface Objectcceveeviiiiiiiiiiieeniiieeee 84
Determining the TopologicalView that Represents the Surface Object............cooccvvvievieennnns 85

DRAFT 6 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

TABLE OF FIGURES

Figure 1 - Three CompartmMent TESE CaSEcoiiuuuiiiiieiee ittt ettt e e e sebbe e e aae s 12
Figure 2 - Three Compartments 0N DECK 1uuiiiiiiiiiiiiiii e 14
Figure 3 — CoEdge Spline DEPENAENCIES........ccuuuiiiiiieei ettt 15
Figure 4 - LEAPS-supported Concept Development ProCeSsS........ooccuvvieeiieiiiiiiiiieeeee e 16
Figure 5 - Example of LEAPS Product MOdel...........cooooiiiiiiii e 17

DRAFT 7 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

INTRODUCTION

Background

In 1996, an innovation team was formed at the Carderock Division, Naval
Surface Warfare Center (NSWCCD) to investigate the issues of virtual
prototyping and modeling and simulation. This team became known as
the LEAPS (Leading Edge Advanced Prototyping for Ships) team. The
efforts of this team led to the development of an architecture that
facilitated an integrated virtual prototyping process for ship concept
assessments. The vision for the virtual prototyping process for ships is
similar to that developed for tank concept assessments by the Army Tank
Automotive Command (TACOM). TACOM won a Presidential Quality
Award for that development. The current scope of the LEAPS
development effort encompasses the first five steps of the TACOM
process:

mission requirements identification,
concepts development;
performance modeling,

warfare analysis; and,

to a lesser extent, detailed design.

arwOE

About the LEAPS Architecture

DRAFT

The LEAPS architecture is a framewaork that can support conceptual
surface ship and submarine design and analysis through DoD acquisition
Milestone 1, i.e., early stage ship design. Due to the complexity and
diversity of naval ship design and analysis, the LEAPS architecture takes
a “meta model” approach to product model development. This general
engineering approach has some classes that may be considered specific
to naval ship design, but most classes would be applicable to
development any engineering product.

To understand the LEAPS architecture it is necessary to have a
taxonomy for concepts such as Application Programming Interface,
Product Model, Meta Model, and other terms used today in discussing
integrated environments and their computational framework. The intent is
not to find agreement with the terminology, only to give it context within
the LEAPS architecture.

The LEAPS MetaModel (LEAPS/MM) is a set of entities that describe
representations and methods that can be used in defining a smart product
model. In particular, these entities allow complex engineering
representations such as ship modeling. For example, there are entities
for geometric representation, performance behaviors, component and
subsystem definition, and processes such as Studies. While this
metamodel was based on ship design and analysis requirements, it is

8 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

general enough that it could be used in the development of almost any
product model.

The LEAPS Application Programming Interface (LEAPS/API) is a set
of C++ classes available for application programming that implement the
LEAPS/MM. The LEAPS/API is a library written using ISO standard C++
and is accessible in both static and dynamic link libraries. This APl is
used to write translators to retrieve and store data associated with the
LEAPS Product Model (LEAPS/PM).

The LEAPS Product Model (LEAPS/PM) is the object oriented schema
or product characterization of the product, or ship, as defined by
individual IPT’s. The product model for a submarine would be different
than a monohull surface combatant. The LEAPS/MM supports the
development of either product model.

The LEAPS Data Base (LEAPS/DB) is the persistent store for any
LEAPS/PM. A LEAPS/DB can be shared by multiple distributed
computers and operating systems: UNIX, Windows 95/NT, and
Macintosh.

LEAPS Applications (LEAPS/APP) are individual applications that
communicate with the LEAPS/DB through the LEAPS/API. In many
cases these individual applications are wrappers to legacy codes. These
wrappers allow both modern and legacy programs to create and analyze
product model data. There are some applications currently in
development that will provide a common interface to the LEAPS/DB that
will deal with executive control and product visualization.

The LEAPS STEP (LEAPS/STEP) is an ISO STEP translation service for
exchange of geometry data through Part21 files. It has been
demonstrated but is not available at this time.

The LEAPS CORBA (LEAPS/CORBA) is a CORBA interface to the
LEAPS/API. Current efforts to incorporate a CORBA interface to the
LEAPS/API are underway. This capability has been demonstrated but is
not available at this time.

System Requirements for LEAPS/API

LEAPS/API is written using 1ISO standard C++. It currently being
development under Microsoft Windows (Win32) using Microsoft Visual
C++. At the time this documentation was written, this compiler supported
all of the 1ISO standard features used by LEAPS. When other platforms
bring their compilers into full compliance with the 1SO standard,
distribution of LEAPS on these platforms will be supported.

Installation

DRAFT

LEAPS is not an application. As such, there is no installation utility. Itis
recommended, however, that you copy the files and their respective

9 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

directories to a location on your computer where you would expect to be
doing development.

References, Help, Technical Support

LEAPS reference material is available through the web site at
http://ocean.dt.navy.mil/leaps

This web site will contain the latest versions of libraries, documentation
and sample code. Technical support is available for funded projects and
collaborative initiatives. Contact Myles Hurwitz, mhurwitz@dt.navy.mil,
(301) 227-1927, if you would like information on how your organization
can participate in the LEAPS environment.

DRAFT 10 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

OVERVIEW OF LEAPS

Overview of Primary Classes

Not yet documented

Overview of Geometry Object Structure (GOBS) Classes

DRAFT

The LEAPS GOBS classes allows CAD system geometry and attributes
to be presented to engineering modelers and analysts in a form which
allows for convenient discretization according to the requirements of their
models. The GOBS model purports that geometric product model data is
defined and represented as ‘views’ of geometric objects. The word “view”
is in gquotes because it is actually an object that appears as geometry.
This is not to say that GOBS does not allow geometric objects to
represent geometric product model data only that another more powerful
approach is available. This is contrary to most CAD representations
where the geometry defines the view and the object simultaneously. In
addition, GOBS contains connection entities that define common
boundaries between objects like the intersection at a deck edge and the
hull. The boundary of the deck knows where it is located on the hull and
visa versa.

A discussion of some of the GOBS objects follows. It is important to
understand that due to space constraints not all GOBS objects are
discussed nor are the various methods available to applications through
the LEAPS/API.

To understand one aspect of this new geometry topology, an example of
three compartments within a ship, depicted in Figure 1 is illustrated. This
three compartment case, while simplistic in appearance, actually poses a
number of challenges to product modeling. Consider the “knowledge”
that must exist at transverse bulkhead 2, (Trans-2). This bulkhead plays a
number of roles one of which is the boundary of three compartments.

The bulkhead is connected to the hull, port and starboard, the
longitudinal, and both decks above and below. In addition, there are
locations on this bulkhead that may be of interest to analysts such as the
corner points at intersections with other surfaces (longitudinal, hull, deck,
etc.). This bulkhead also plays a role as a boundary, or Face, of each
individual compartment. These boundaries can be described as “views”
of the bulkhead as seen by each compartment and unique to each
compartment. Consider also that the object Trans-2 may play a role, or
roles, in many other “views” such as a watertight bulkhead bounding a
zone on the ship.

11 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Long Trans-3

Figure 1 - Three Compartment Test Case

Product Model Views

In GOBS *“views” of product model data are actually objects that
compose existing geometry into unique physical objects. Similarly there
are views that associate physical objects into like groupings. Views that
create physical objects from geometry elements are called Topological
Views. Views that associate Topological Views into common groups are
called Common Views.

Topological Views

The term Topological View is foreign to most familiar with geometric
modeling. Its best to think of them as traditional surfaces, trimmed
surfaces, and Brep solids, with additional capability. The construction of
Topological Views allows for member shape objects, like surfaces and
solids, used in the creation of a Topological View, to also play a role as
geometric members in others Topological Views.

Common Views

Common Views do not have any spatial constraints, unlike Topological
Views, they are simply a logical grouping of Topological Views. Common
Views can also have other Common Views as members. Common Views
are the primary vehicle by which domain analyst or designers will view or
interrogate the product model. One example of a Common View could be
“Habitability Spaces on Deck 3”. Another Common View called “Ship

DRAFT 12 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Habitability Spaces” could contain the Common View “Habitability
Spaces on Deck 3” as a member. Similar uses of Common Views could
include “Exterior Surfaces”, “Compartments”, “Machinery Spaces”, or
“Mast”.

Shape Objects

Some distinctions should be made of the differences between GOBS
shape objects and what can be considered typical geometric entities in
applications that use and compose geometry such as CAD systems. In
GOBS, geometry (Topological Views) is the association of shape and
Properties. Current shape objects are Surfaces, trimmed surfaces
(Faces), and manifold Brep Solids.

One major difference in GOBS modeling is the representation of Faces.
Currently CAD systems today consider a Face to be composed of a
single Surface bounded by a single outer boundary and any number of
inner boundaries. The typical CAD model does not allow the underlying
Surface to be used in the construction of any other Face. It requires that
a copy of that Surface be made. GOBS, on the other hand, allows for a
single Surface to be used in the construction of any number of Faces;
where the Face object contains reference to one Surface, one outer
EdgeLoop, and any number of inner EdgeLoops. This concept is
illustrated more clearly in Figure 2 where the deck on a ship is shown
highlighting three Faces used as compartment boundaries. All three
Faces share a common deck Surface and are defined by a selection of
Edges that compose a bounded EdgelLoop.

Because Surfaces, Faces, and Solids are shape objects they have no
Properties. In GOBS the Topological View class associates member
shape objects with physical characteristics or Properties and can be
thought of as a geometric component, or part. The Topological View has
Properties of a physical or performance nature, where the underlying
Surface, Face, or Solid object, is simply providing information on its
shape. As Topological Views are composed, the grouping into Common
Views is the next natural step.

In Figure 2, Topological Views of regions on a deck are illustrated. In this
case they appear as “Comp 1 Deck”, “Comp 2 Deck”, and “Comp 3
Deck”. Each Topological View use Faces (“FAL", “FA2", “FA3") to define
their shape within compartments (Common Views named “Compartment
1", “Compartment 2", “Compartment 3”). Similarly these Common View
compartments are also shown as members of a single Common View
defining a zone (“Zone 17). In summary, this example demonstrates how
space with each compartment derives their shape from Faces. These
Faces are defined as simple boundaries (EdgeLoops) on single
underlying geometric element which is a Surface (Deck 1) defining the
entire deck shape. These spaces are then associated in a Common View
to support design domain knowledge.

13 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

"’//

Face - Fa2

TopV - Comp 2 Deck
ComV - Compartment 2
ComV - Zone 1

Surface - Deck 1

Face - Fal

TopV - Comp 1 Deck
ComV - Compartment 1
ComV - Zone 1

Surface - Deck 1

Face - Fa3

TopV - Comp 3 Deck
ComV - Compartment 3
ComV - Zone 1

Figure 2 - Three Compartments on Deck 1

Again, GOBS takes the position that topology is a view of space not the
space itself. An office room, ship’s compartments, or other like space,
can be viewed as the collection of faces that make the walls, floor, and
ceiling. To the occupant the wall of the room extends to the intersection
of other walls, ceiling, and floor. The wall, however, may be defined as
the space bounded by the outside walls of a building. Thus, the office
room could be represented as a list of connected faces where the view of
the wall is the region of the larger wall surface with local boundaries
applied.

Another fundamental feature of GOBS is the CoEdge object. The
CoEdge provides a unique role in the discretization of the geometry for
analysis. Essentially, a CoEdge knows all edges located on each surface
and declares them to be equivalent in 3 space, see Figure 3. It also
contains an n-dimensional spline function that maps the parameterization
of each edge into a single function. This allows for the continuity of points
along one surface to migrate to another surface without having to perform
closest point approximations.

14 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Surfacef: (u, v)s (X,V, 2)
Surfacem: (s, t)+ (X, Y, 2)
Pcurvea: (i)s (u, v)
Pcurveb: (j)s (s, t)
CoEdgeSplineg: (r)« (i, j

Figure 3 — CoEdge Spline Dependencies

With this topology the ability to traverse boundaries, both logically,
explicitly, and with information on the relationship of surface parameter
space affords many advantages. Clearly the ability to grid or mesh
across trim surface boundaries with node continuity is the most obvious.
With the GOBS objects available as a CORBA service to legacy
applications, the communication of a single product model geometry in
multiple views provides a efficient and effective means for multidiscipline
analysis.

Overview of Utility Classes

Not yet documented

DRAFT 15 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

GETTING STARTED

Defining and Designing Your Product Model

DRAFT

Defining your product model is a complex task. There are many
references to product model design and the subject is too broad to cover
here. There has been some product model development done in support
of LEAPS that pertains to ship design and analysis, but this is an ongoing
effort. Likewise, STEP application protocols for ships have been
developed by and for shipyards that has some overlap with concept
design and analysis. This also is an evolving standard.

Figure 4 shows an example of a ship concepts analysis data flow process
that is driven by an Integrated Process Team (IPT) It was created as part
of the initial LEAPS effort. Such a model helps to define a use case for
your product model.

LEAPS: Leading Edge Advanced Prototyping for Ships

*Budget

*Performance thresholds and goals
«Cultural

*Physical

()

Effective Concepts
Technology Needs
Tool Needs
*Existing *Design
*Emerging *Performance

Technologies Analysis Tools

NSWCCD Innovation Center

Figure 4 - LEAPS-supported Concept Development Process

The IPT is responsible to define and design the LEAPS/PM. The IPT
must determine what attributes are needed by the study and define these
attributes. The IPT must also determine where the attributes belong in
the Leaps/MM and specify the analyst responsible for providing the data
for the attribute. Figure 5 shows an example of a part of a LEAPS/PM that
was defined by the LEAPS team.

16 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Instance Class Type Parent Owner
hull_principal dimensions | Lps::PropertyGroupPtr hull_form

lbp Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
beam Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
draft Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
depth sta 0 Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
depth sta 3 Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
depth_sta 10 Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
depth_sta 20 Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
prismatic_coef Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
max_section_coef Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
waterplane_coef Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
Icb_lbp Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
Icf_lbp Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
half_siding_width Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
bot_rake Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
main_deck ht Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
raised_deck ht Lps::PropertyPtr Lps::RealScalarPtr hull_principal dimensions
raised _deck_limits_array Lps::PropertyPtr Lps::RealSTLVectorPtr hull_principal dimensions

Figure 5 - Example of LEAPS Product Model

The analyst is responsible for the translator that retrieves the attributes he
needs to develop his input for his analysis program. Thus, the analyst
must determine what attributes are needed from the LEAPS/PM to
develop his input for his analysis program. The analyst is also
responsible for the translator that stores the attributes he is responsible
for in the LEAPS/PM. The analyst must insure that attributes he provides
are being used appropriately by other members of the IPT.

Compiling Your Application Using the LEAPS API

DRAFT

Compiling your application using the LEAPS class library is dependent on
the platform (i.e. operation system), the compiler, and linker being used.
The compiler must be fully compliant with the ISO C++ standard.
Currently, LEAPS libraries are only available for Windows NT 4.0.

There are three steps needed to ensure the proper generation of an
executable.

1. The include path must be setup properly to ensure that directory
references to all the include files needed by the LEAPS API are
established. Using Visual C++ 5.0, this is done with the /I option for
the compile command. For example, if the include path for LEAPS is
L:\leaps\include, then /I “ L:\leaps\include” would be added as an
option to the compile command.

2. Like the include path in step 1, the library path that contains the
LEAPS library (this includes the DTNURBS library) must also be
located by the linker. Using Visual C++ 5.0, this is done with the
/libpath option for the link command. For example, if the library path

17 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

for LEAPS is L:\leapsl\libraries, then /libpath:"L:\leaps\libraries"
would be added as an option to the link command.

3. The appropriate LEAPS and DTNURBS libraries must also be
included in the link command. For example using Visual C++ 5.0 in a
console application, LeapsV2StaticRelease.lib and
dtnurbsV35StaticRelease.lib would be added to the link command.
The appropriate libraries (dtnurbsV35DLLRelease.lib,
LeapsV2DLLRelease.lib) would be substituted for WIN32 DDL based
applications.

If the DLL version of the LEAPS library is used, application programs
should be compiled with the proper multithreaded DLLs and
__ DLLIMPORT should be defined.

Creating a LEAPS Database

LEAPS/API stores all persistent data in a database. This database is a
directory on the file system where the LEAPS/PM data will be stored.
The user simply creates a directory on the file system. The user has the
option of referencing this database through a user defined environment
variable or specifying the directory path explicitly. Once the directory is
created, modification of this directory should only occur through the
LEAPS API. If modification of this directory occurs by other means, it
could corrupt the database.

DRAFT 18 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

MANAGEMENT OF LEAPS OBJECTS

Managing a LEAPS Database

A LEAPS Factory is created to manage a LEAPS database. To create a
Factory to manage a database whose directory is SampleLeapsDB, code
such as:

Lps:: Factory | eapsDB;
| eapsDB = Lps::Factory::create ("Sanpl eLeapsDB");

is used.

Managing Studies

DRAFT

A LEAPS Factory manages LEAPS Study objects that are in a LEAPS
database. The Factory has member methods that provide various
functions that involve Study objects. These member methods can:

Create a Study object,

Retrieve a Study object,

Destroy a Study object,

Determine the existence of a Study object, and

List Study objects that are managed by the Factory.

Creating a Study

If leapsDB is a factory that has been created to manage a LEAPS
database, a program can create a Study with the following code.

Lps:: StudyPtr cvxStudy;
cvxStudy = | eapsDB->createStudy ("cvxStudy", 1);

Retrieving a Study

If leapsDB is a factory that has been created to manage a LEAPS
database, a program can retrieve a Study with the following code.

Lps:: StudyPtr cvxStudy;
cvxStudy = | eapsDB->get Study ("cvxStudy", 1);

Destroying a Study

If leapsDB is a factory that has been created to manage a LEAPS
database, a program can destroy a Study with the following code.

| eapsDB- >destroyStudy ("cvxStudy", 1);

Determining the Existence of a Study

If leapsDB is a factory that has been created to manage a LEAPS
database, the following code determines if a study exists.

19 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

If (| eapsDB->doesSt udyExi st ("cvxStudy", 1)
std::cout << "Study Exists" << std::endl;

el se
std::cout << "Study does NOT Exist" << std::endl;

Listing the Studies Managed by a Factory

If leapsDB is a factory that has been created to manage a LEAPS
database, a program can obtain a list of the studies unique identifiers
that are contained within the database with the following code.

Lps: : Uni quel dLi st uidLi st = | eapsDB->get Ui dsOf St udies ();
or a list of names and versions of the studies with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = | eapsDB- >get NaneVer si onPai rsOf St udi es ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing Concepts

DRAFT

A LEAPS Study object manages LEAPS Concept objects that are
contained by it. The Study has member methods that provide various
functions that involve Concept objects. These member methods can:

Create a Concept object,

Retrieve a Concept object,

Destroy a Concept object,

Determine the existence of a Concept object,

List Concept objects that are contained within the Study, and
Retrieve a Concept's structure (geometry).

Creating a Concept

If cvxStudy is a Study object that has been retrieved, a program can
create a Concept with the following code.

Lps:: Concept Ptr cvx;
cvx = cvxStudy->createConcept ("cvx", 1);

Retrieving a Concept

If cvxStudy is a Study object that has been retrieved, a program can
retrieve a Concept with the following code.

Lps:: Concept Ptr cvx;
cvx = cvxStudy->get Concept ("cvx", 1);

20 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Destroying a Concept

If cvxStudy is a Study object that has been retrieved, a program can
destroy a Concept with the following code.

cvxSt udy- >dest royConcept ("cvx", 1);

Determining the Existence of a Concept

If cvxStudy is a Study object that has been retrieved, the following code
determines if a Concept exists.

If (cvxStudy->doesConcept Exi st ("cvx", 1)
std::cout << "Concept Exists" << std::endl;
el se
std::cout << "Concept does NOT Exist" << std::endl;

Listing the Concepts Contained in a Study

If cvxStudy is a Study object that has been retrieved, a program can
obtain a list of the concepts unique identifiers that are contained within
the Study with the following code.

Lps: : Uni quel dLi st ui dLi st = cvxStudy->get Ui dsCf Concepts ();

or a list of names and versions of the concepts with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = cvxStudy->get NaneVer si onPai r sOf Concepts ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Retrieving a Concept’s Structure

If cvx is a Concept object that has been retrieved, a program can obtain
the concept’s structure with the following code.

Lps:: StructurePtr cvxStructure,;
cvxStructure = cvx->get ConceptStructure ();

Managing Scenarios

A LEAPS Study object manages LEAPS Scenario objects that are
contained by it. The Study has member methods that provide various
functions that involve Scenario objects. These member methods can:

Create a Scenario object,

Retrieve a Scenario object,

Destroy a Scenario object,

Determine the existence of a Scenario object, and

List Scenario objects that are contained within the Study.

DRAFT 21 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Creating a Scenario

If cvxStudy is a Study object that has been retrieved, a program can
create a Scenario with the following code.

Lps:: ScenarioPtr situationA;
situati onA = cvxStudy->createScenario ("situationA", 1);

Retrieving a Scenario

If cvxStudy is a Study object that has been retrieved, a program can
retrieve a Scenario with the following code.

Lps:: ScenarioPtr situationA;
situati onA = cvxStudy->get Scenario ("situati onA", 1);

Destroying a Scenario

If cvxStudy is a Study object that has been retrieved, a program can
destroy a Scenario with the following code.

cvxStudy->destroyScenario ("situationA", 1);

Determining the Existence of a Scenario

If cvxStudy is a Study object that has been retrieved, the following code
determines if a Scenario exists.

If (cvxStudy->doesScenari oExi st ("situationA", 1)
std::cout << "Scenario Exists" << std::endl;

el se
std::cout << "Scenario does NOT Exist" << std::endl;

Listing the Scenarios Contained in a Study

If cvxStudy is a Study object that has been retrieved, a program can
obtain a list of the Scenarios unique identifiers that are contained within
the Study with the following code.

Lps:: Uni quel dLi st ui dLi st = cvxStudy->get Ui dsCOf Scenari os ();

or a list of names and versions of the Scenarios with

Lps: : NaneVer si onPai r Li st nvlLi st;
nvLi st = cvxStudy->get NaneVer si onPai r sOf Scenari os ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing Components

DRAFT

A LEAPS Concept object is composed of LEAPS Component objects.
The Concept has member methods that provide various functions that
involve the management of Component objects. These member methods
can:

22 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Create a Component object,

Retrieve a Component object,

Destroy a Component object,

Determine the existence of a Component object,

List Component objects that are contained within the Concept,
and

Retrieve a Component’s structure (geometry).

Creating a Component

If cvxConcept is a Concept object that has been retrieved, a program can
create a Component with the following code.

Lps:: Component Ptr punp;
punp = cvxConcept - >cr eat eConponent ("punp", 1);

Retrieving a Component

If cvxConcept is a Concept object that has been retrieved, a program can
retrieve a Component with the following code.

Lps:: Conmponent Ptr punp;
punp = cvxConcept - >get Conponent (" punmp", 1);

Destroying a Component

If cvxConcept is a Concept object that has been retrieved, a program can
destroy a Component with the following code.

cvxConcept - >dest r oyConponent (" punp", 1);

Determining the Existence of a Component
If cvxConcept is a Concept object that has been retrieved, the following
code determines if a Component exists.

If (cvxConcept->doesConmponent Exi st (" punp", 1)
std::cout << "Conponent Exists" << std::endl;

el se
std::cout << "Conponent does NOT Exist" << std::endl;

Listing the Components Contained in a Concept

If cvxConcept is a Concept object that has been retrieved, a program can
obtain a list of the Components unique identifiers that are contained
within the Concept with the following code.

Lps: : Uni quel dLi st ui dLi st = cvxConcept - >get Ui dsOf Conponents () ;

or a list of names and versions of the Components with

Lps: : NaneVer si onPai r Li st nvLi st;
nvLi st = cvxConcept - >get NaneVer si onPai r sO Conponents ();

23 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Retrieving a Component’s Structure

If pump is a Component object that has been retrieved, a program can
obtain the component’s structure with the following code.

Lps:: StructurePtr punpStructure;
punpStructure = punp->get Conponent Structure ();

Managing Systems

A LEAPS Concept object is composed of LEAPS System objects. The
Concept has member methods that provide various functions that involve
the management of System objects. These member methods can:

Create a System object,

Retrieve a System object,

Destroy a System object,

Determine the existence of a System object, and

List System objects that are contained within the Concept.

Creating a System

If cvxConcept is a Concept object that has been retrieved, a program can
create a System with the following code.

Lps:: SystenPtr fireMain;
fireMain = cvxConcept - >createSystem ("fireMin", 1);

Retrieving a System

If cvxConcept is a Concept object that has been retrieved, a program can
retrieve a System with the following code.

Lps:: SystenPtr fireMin;
fireMain = cvxConcept - >get System ("fireMain", 1);

Destroying a System

If cvxConcept is a Concept object that has been retrieved, a program can
destroy a System with the following code.

cvxConcept - >destroySystem ("fireMain", 1);

Determining the Existence of a System

If cvxConcept is a Concept object that has been retrieved, the following
code determines if a System exists.

If (cvxConcept->doesSystentxist ("fireMin", 1)
std::cout << "System Exists" << std::endl;
el se

DRAFT 24 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

std::cout << "System does NOT Exist" << std::endl;

Listing the Systems Contained in a Concept

If cvxConcept is a Concept object that has been retrieved, a program can
obtain a list of the Systems unique identifiers that are contained within the
Concept with the following code.

Lps: : Uni quel dLi st ui dLi st = cvxConcept - >get Ui dsOf Systens ();
or a list of names and versions of the Systems with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = cvxConcept - >get NaneVer si onPai r sO Systens ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing Connections

DRAFT

A LEAPS Concept object is composed of LEAPS Connection objects.
The Concept has member methods that provide various functions that
involve the management of Connection objects. These member methods
can:

Create a Connection object,

Retrieve a Connection object,

Destroy a Connection object,

Determine the existence of a Connection object, and

List Connection objects that are contained within the Concept.

Creating a Connection

If cvxConcept is a Concept object that has been retrieved, a program can
create a Connection with the following code.

Lps:: ConnectionPtr fireMi nConnecti on;
fireMai nConnection = cvxConcept ->creat eConnection
("fireMai nConnection", 1);

Retrieving a Connection

If cvxConcept is a Concept object that has been retrieved, a program can
retrieve a Connection with the following code.

Lps:: ConnectionPtr fireMi nConnecti on;
fireMai nConnection = cvxConcept - >get Connecti on
("fireMai nConnection", 1);

Destroying a Connection

If cvxConcept is a Concept object that has been retrieved, a program can
destroy a Connection with the following code.

25 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

cvxConcept - >dest royConnection ("fireMinConnection", 1);

Determining the Existence of a Connection

If cvxConcept is a Concept object that has been retrieved, the following
code determines if a Connection exists.

I f (cvxConcept->doesConnecti onExi st ("fireMii nConnection", 1)
std::cout << "Connection Exists" << std::endl;

el se
std::cout << "Connection does NOT Exist" << std::endl;

Listing the Connections Contained in a Concept

If cvxConcept is a Concept object that has been retrieved, a program can
obtain a list of the Connections unique identifiers that are contained within
the Concept with the following code.

Lps: : Uni quel dLi st ui dLi st = cvxConcept - >get Ui dsOf Connections ();

or a list of names and versions of the Connections with

Lps: : NaneVer si onPai r Li st nvlLi st;
nvLi st = cvxConcept - >get NameVer si onPai r sOf Connections ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing Diagrams

DRAFT

A LEAPS Concept object is composed of LEAPS Diagram objects. The
Concept has member methods that provide various functions that involve
the management of Diagram objects. These member methods can:

Create a Diagram obiject,

Retrieve a Diagram object,

Destroy a Diagram object,

Determine the existence of a Diagram object, and

List Diagram obijects that are contained within the Concept.

Creating a Diagram

If cvxConcept is a Concept object that has been retrieved, a program can
create a Diagram with the following code.

Lps:: Di agranPtr fireMinD agram
fireMai nDi agram = cvxConcept - >cr eat eDi agram ("fireMi nDi agr ant',
1);

Retrieving a Diagram

If cvxConcept is a Concept object that has been retrieved, a program can
retrieve a Diagram with the following code.

26 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Lps:: Di agranPtr fireMinD agram
fireMai nDi agram = cvxConcept - >get Di agram ("fi reMai nDi agrant, 1);

Destroying a Diagram

If cvxConcept is a Concept object that has been retrieved, a program can
destroy a Diagram with the following code.

cvxConcept - >dest r oyDi agram ("fireMi nDi agrant', 1);

Determining the Existence of a Diagram

If cvxConcept is a Concept object that has been retrieved, the following
code determines if a Diagram exists.

I f (cvxConcept->doesDi agrantxi st ("fireMinDi agrant, 1)
std::cout << "Diagram Exists" << std::endl;

el se
std::cout << "Diagram does NOT Exist" << std::endl;

Listing the Diagrams Contained in a Concept

If cvxConcept is a Concept object that has been retrieved, a program can
obtain a list of the Diagrams unique identifiers that are contained within
the Concept with the following code.

Lps: : Uni quel dLi st ui dLi st = cvxConcept - >get Ui dsOf Di agrans ();

or a list of names and versions of the Diagrams with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = cvxConcept - >get NaneVer si onPai r sO Di agrans ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing LEAPS Geometry Objects

A LEAPS Structure Obiject is part of a LEAPS Concept object or a LEAPS
Component object.. The Structure object manages all LEAPS geometry
objects. A Structure object has member methods that provide various
functions that involve the management of LEAPS geometry objects.
These member methods can:

Create LEAPS geometry objects,

Retrieve LEAPS geometry objects,

Destroy LEAPS geometry objects,

Determine the existence of LEAPS geometry objects, and

List LEAPS geometry objects that are contained within the
Structure.

DRAFT 27 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Creating a Surface

A LEAPS surface is defined by a non-uniform rational B-spline (NURBS).
The spline is defined by a STL vector of SplineDomainVaribles and a STL
vector of SplineRangeVariables. If the spline is rational a STL vector of
weights is also part of the spline. A SplineDomainVariable is defined with
a label, the order, and the knots associated with the domain variable. A
SplineRangeVariable is defined by a label and the control points
associated with the range variable. There a two SplineDomainVariables
that are the u and v parametric variables of the spline and three
SplineRangeVariables that are the x, y, and z control points. If structure
is a Structure object that has been retrieved from a Concept or a
Component, a program can create a Surface with the following code.

/! define the order of the dommin variable
Lps::Uint32 order4 = 4,

/1 define array of knots
Lps:: Real 64 knotArray[9] = {0, O, O, O, 0.5, 1, 1, 1, 1};
std::vector <Lps::Real 64> knots;
for (int i =0 ; i <9 ; ++i)
knot s. push_back (knotArray[i]);

/!l create u dommin variable
Lps: : Spli neDonui nVari abl e uEntry;
UEntry.create (knots, order4, "u");

/1 create v domain variable using the sane knots and order
Lps:: Spli neDomai nVari abl e vEntry;
VEntry.create (knots, order4, "v");

/1 create the STL vector of donmin variables
std::vector<Lps:: SplineDonmai nVari abl e> domai nDat a;
donmai nDat a. push_back (uEntry);

domai nDat a. push_back (VvEntry);

/'l create STL vector of weights
std::vector <Lps::Real 64> weights;
for (i =0 ; i <25 ; ++i)

wei ghts. push_back (1.0);

/1 create STL vector of x control points
Lps:: Real 64 xO I PtArray[] = {0,5, 10, 15, 20, 0, 5, 10, 15, 20, 0, 5, 10, 15,
20, 0,5, 10,15, 20,0, 5, 10, 15, 20};
std::vector <Lps::Real 64> xCt| Pts;
for (i =0 ; i <25 ; ++i)
XxC | Pts. push_back (xCtlPtArray[i]);

/'l create x SplineRangeVari abl e
Lps:: SplineRangeVari abl e xEntry;
xEntry.create (xClPts, "x");

/| create STL vector of y control points
Lps:: Real 64 y& I PtArray[] = {-10,-10,-10,-10,-10,-5,-5,-5,-5,
-5,0,0,0,0,0,5,5,5,5, 5, 10, 10, 10,
10, 10};
std::vector <Lps::Real 64> yCt| Pts;
for (i =0 ; i <25 ; ++i)
yC | Pts. push_back (yCtIPtArray[i]);

28 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

/1 create y SplineRangeVari abl e
Lps:: Spli neRangeVari abl e yEntry;
yEntry.create (yQlPts, "y");

/1 create STL vector of z control point

oints
Lps:: Real 64 zCtI Pt Array[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0};
std::vector <Lps::Real 64> zCt| Pts;
for (i =0 ; i <25 ; ++i)

zCt I Pts. push_back (zCtlPtArray[i]);

/'l create z SplineRangeVari abl e
Lps:: Spli neRangeVari abl e zEntry;
zEntry.create (zCtlPts, "z");

/1 create STL vector of range variables
std::vector<Lps:: SplineRangeVari abl e> rangeDat a;
rangeDat a. push_back (xEntry);

rangeDat a. push_back (yEntry);

rangeDat a. push_back (zEntry);

Lps:: SurfacePtr surface;
surface = structure->createSurface ("bf41", 1, domai nData,
rangeDat a, wei ghts);

Other methods to create a Surface are also available and can be found in
the LEAPS reference manual [4].

Retrieving a Surface

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a Surface with the following code.

Lps:: SurfacePtr surface;
surface = structure->getSurface ("bf41", 1);

Destroying a Surface

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a Surface with the following code.

structure->destroySurface ("bf41", 1);

Determining the Existence of a Surface

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a Surface exists with the
following code.

I f (structure->doesSurfaceExist ("bf41", 1)
std::cout << "Surface Exists" << std::endl;
el se
std::cout << "Surface does NOT Exist" << std::endl;

Listing the Surfaces Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Surfaces unique
identifiers that are contained within the Structure with the following code.

DRAFT 29 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Lps: : Uni quel dLi st ui dLi st = structure->getU dsO Surfaces ();

or a list of names and versions of the Surfaces with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = structure->get NaneVer si onPai rsOf Surfaces ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a Pcurve

A LEAPS Pcurve is parametric curve that lies on a LEAPS Surface. It is
defined by a non-uniform rational B-spline (NURBS). The spline is
defined by a STL vector of SplineDomainVaribles and a STL vector of
SplineRangeVariables. If the spline is rational a STL vector of weights is
also part of the spline. A SplineDomainVariable is defined with a label,
the order, and the knots associated with the domain variable. A
SplineRangeVariable is defined by a label and the control points
associated with the range variable. There one SplineDomainVariable that
is s parametric variable of the spline and two SplineRangeVariables that
are the u and v control points. If structure is a Structure object that has
been retrieved from a Concept or a Component, a program can create a
Pcurve with the following code.

/! define the order of the dommin variable
Lps::Uint32 order4 = 4,

/1 define array of knots
Lps:: Real 64 knotArray[9] = {0, O, O, O, 0.5, 1, 1, 1, 1};
std::vector <Lps::Real 64> knots;
for (int i =0 ; i <9 ; ++i)
knots. push_back (knotArray[i]);

/1 create s donmin variable
Lps:: Spli neDomai nVari abl e sEntry;
sEntry.create (knots, order4, "s");

/1 create the STL vector of donmin variables
std::vector<Lps:: SplineDonai nVari abl e> domai nDat a;
donai nDat a. push_back (sEntry);

/1 create STL vector of weights
std::vector <Lps::Real 64> weights;
for (i =0 ; i <5 ; ++i)

wei ght s. push_back (1.0);

/1 create STL vector of u control points
Lps:: Real 64 uCtlIPtArray[] = {0,.25,.5,.75,1};
std::vector <Lps::Real 64> uCtl| Pts;
for (i =0 ; i <5 ; ++i)

uCtl Pts. push_back (uCtlPtArray[i]);

/1 create u SplineRangeVari abl e

Lps:: Spli neRangeVari abl e uEntry;
UEntry.create (uCtlPts, "u");

DRAFT 30 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

/1 create STL vector of v control points
Lps:: Real 64 v& I PtArray[] = {0,0,0,0,0};
std::vector <Lps::Real 64> vCt| Pts;
for (i =0 ; i <5 ; ++i)

vCt| Pts. push_back (vQ&tIPtArray[i]);

/'l create v SplineRangeVari abl e
Lps:: SplineRangeVari abl e vEntry;
VEntry.create (vCQtlPts, "v");

/1 create STL vector of range vari abl es
std::vector<Lps::SplineRangeVari abl e> rangeDat a;
rangeDat a. push_back (uEntry);

rangeDat a. push_back (VEntry);

/'l retrieve surface that the curve lies on
Lps:: SurfacePtr mappedTo;
mappedTo = structure->getSurface ("bf41", 1);

Lps:: PcurvePtr Pcurve;
Pcurve = structure->createPcurve ("bf1", 1, nmappedTo, donai nDat a,
rangeDat a, wei ghts);

Other methods to create a Pcurve are also available and can be found in
the LEAPS reference manual [4].

Retrieving a Pcurve

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a Pcurve with the following code.

Lps:: PcurvePtr Pcurve;
Pcurve = structure->get Pcurve ("bf1l", 1);

Destroying a Pcurve

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a Pcurve with the following code.

structure->destroyPcurve ("bf1", 1);

Determining the Existence of a Pcurve

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a Pcurve exists with the
following code.

If (structure->doesPcurveExist ("bf1", 1)
std::cout << "Pcurve Exists" << std::endl;
el se
std::cout << "Pcurve does NOT Exist" << std::endl;

Listing the Pcurves Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Pcurves unique
identifiers that are contained within the Structure with the following code.

DRAFT 31 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Lps: : Uni quel dLi st ui dLi st = structure->getU dsO Pcurves ();

or a list of names and versions of the Pcurves with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = structure->get NaneVer si onPai rsOf Pcurves ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a Ppoint

A LEAPS Ppoint is parametric point that lies on a LEAPS Pcurve. If
structure is a Structure object that has been retrieved from a Concept or a
Component, a program can create a Ppoint with the following code.

Lps:: Real 64 value = 0.0;

Lps:: PcurvePtr mappedTo = structure->getPcurve ("bf1", 1);
Lps: : Ppoi nt Ptr ppoint;

ppoi nt = structure->createPpoint ("epl", 1, mappedTo, value);

Other methods to create a Ppoint are also available and can be found in
the LEAPS reference manual [4].

Retrieving a Ppoint
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a Ppoint with the following code.

Lps: : Ppoi nt Ptr ppoint;
ppoi nt = structure->getPpoint ("epl", 1);

Destroying a Ppoint
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a Ppoint with the following code.

structure->destroyPpoint ("epl", 1);

Determining the Existence of a Ppoint

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a Ppoint exists with the
following code.

I f (structure->doesPpoint Exi st ("epl", 1)
std::cout << "Ppoint Exists" << std::endl;
el se
std::cout << "Ppoint does NOT Exist" << std::endl;

Listing the Ppoints Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Ppoints unique identifiers
that are contained within the Structure with the following code.

DRAFT 32 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Lps: : Uni quel dLi st ui dLi st = structure->getU dsO Ppoints ();

or a list of names and versions of the Ppoints with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = structure->get NaneVer si onPai r sOf Ppoints ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a CoPoint

A LEAPS CoPoint is a group of LEAPS Ppoint objects that are associated
with the same location in model space. If structure is a Structure object
that has been retrieved from a Concept or a Component, a program can
create a CoPoint with the following code.

/1 create the cartesian |location at which the Ppoints |ocated
Lps:: CartesianLocation pt (0.0, -10.0, 0.0);

/1 create a STL vector of the associated Ppoints
Lps: : Ppoi nt PtrLi st associ at edPpoints;

associ at edPpoi nts. push_back (structure->getPpoint ());
associ at edPpoi nts. push_back (structure->getPpoint ());
associ at edPpoi nts. push_back (structure->getPpoint (» 1))
associ at edPpoi nts. push_back (structure->getPpoint ("epl6_2", 1))
associ at edPpoi nts. push_back (structure->getPpoint (1))
associ at edPpoi nts. push_back (structure->getPpoint (1))

/'l create the CoPpoint

Lps: : CoPoi nt Ptr coPoi nt;

coPoi nt = structure->createCoPoint ("cpl", 1, associatedPpoints,
pt);

Other methods that create a CoPoint are also available and can be found
in the LEAPS reference manual [4].

Retrieving a CoPoint

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a CoPoint with the following code.

Lps: : CoPoi nt Ptr coPoi nt;
coPoi nt = structure->get CoPoint ("cpl", 1);

Destroying a CoPoint

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a CoPoint with the following code.

structure->destroyCoPoi nt ("cpl", 1);

DRAFT 33 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Determining the Existence of a CoPoint

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a CoPoint exists with the
following code.

If (structure->doesCoPoi nt Exi st ("cpl", 1)
std::cout << "CoPoint Exists" << std::endl;
el se
std::cout << "CoPoint does NOT Exist" << std::endl;

Listing the CoPoints Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the CoPoints unique
identifiers that are contained within the Structure with the following code.

Lps: : Uni quel dLi st ui dLi st = structure->getU dsO CoPoints ();

or a list of names and versions of the CoPoints with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = structure->get NaneVer si onPai r sOf CoPoi nts ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating an Edge

A LEAPS Edge is an oriented segment of a LEAPS Pcurve object. The
Edge is defined by specifying the start and end Ppoints of the Edge. If
structure is a Structure object that has been retrieved from a Concept or a
Component, a program can create an Edge with the following code.

Lps:: PpointPtr startPt;
startPt = structure->getPpoint ("epl_1", 1);

Lps: : Ppoi ntPtr endPt;
endPt = structure->getPpoint ("epl_2", 1);

/1 create the Edge
Lps: : EdgePtr edge;
edge = structure->createEdge ("ecl_la", 1, startPt, endPt);

Other methods that create an Edge are also available and can be found
in the LEAPS reference manual [4].

Retrieving an Edge

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve an Edge with the following code.

Lps: : EdgePtr edge;
edge = structure->get Edge ("ecl_la", 1);

34 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Destroying an Edge

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy an Edge with the following code.

structure->destroyEdge ("ecl_la", 1);

Determining the Existence of an Edge

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if an Edge exists with the
following code.

If (structure->doesEdgeExist ("ecl_la", 1)
std::cout << "Edge Exists" << std::endl;

el se
std::cout << "Edge does NOT Exist" << std::endl;

Listing the Edges Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Edges unique identifiers
that are contained within the Structure with the following code.

Lps: : Uni quel dLi st ui dLi st = structure->getU dsOf Edges ();

or a list of names and versions of the Edges with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = structure->get NaneVer si onPai r sOf Edges () ;

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a CoEdge

A LEAPS CoEdge is a group of LEAPS Edge objects that are associated
with the same location in model space. A CoEdge generally repesents
the intersection of two surfaces. If structure is a Structure object that has
been retrieved from a Concept or a Component, a program can create a
CoEdge with the following code.

/1 create a STL vector of the associ ated Edges

Lps: : EdgePtrLi st associ at edEdges;

associ at edEdges. push_back (structure->getEdge ("ecl_la", 1));
associ at edEdges. push_back (structure->getEdge ("ecl3_1la", 1));

/1 create the CoEdge

Lps: : CoEdgePtr coEdge;
coEdge = structure->createCoEdge ("cel", 1, associ atedEdges)

Other methods that create a CoEdge are also available and can be found
in the LEAPS reference manual [4].

35 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Retrieving a CoEdge

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a CoEdge with the following code.

Lps: : CoEdgePtr coEdge;
coEdge = structure->get CoEdge ("cel", 1);

Destroying a CoEdge

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a CoEdge with the following code.

structure->destroyCoEdge ("cel", 1);

Determining the Existence of a CoEdge

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a CoEdge exists with the
following code.

I f (structure->doesCoEdgeExi st ("cel", 1)
std::cout << "CoEdge Exists" << std::endl;
el se
std::cout << "CoEdge does NOT Exist" << std::endl;

Listing the CoEdges Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the CoEdges unique
identifiers that are contained within the Structure with the following code.

Lps: : Uni quel dLi st ui dLi st = structure->get U dsO CoEdges ();

or a list of names and versions of the CoEdges with

Lps: : NaneVer si onPai r Li st nvLi st;
nvLi st = structure->get NameVer si onPai r sOf CoEdges ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating an EdgeLoop

A LEAPS EdgeLoop is a set of connected LEAPS Edge objects that form
a closed loop that is not self intersecting. If structure is a Structure object
that has been retrieved from a Concept or a Component, a program can
create an EdgelLoop with the following code.

/1 create a STL vector of the connected Edges
Lps: : EdgePtrLi st connect edEdges;

connect edEdges. push_back (structure->getEdge ("ecl_1a", 1))
connect edEdges. push_back (structure->getEdge ("ec5_2a", 1));
connect edEdges. push_back (structure->getEdge ("ec5_1a", 1));
connect edEdges. push_back (structure->get Edge ("ec3_2a", 1));
connect edEdges. push_back (structure->getEdge ("ec4_1a", 1))

36 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

/1 create the EdgelLoop
Lps: : EdgeLoopPtr edgeloop;
edgelLoop = structure->createEdgeLoop ("el _1la", 1, connectedEdges)

Other methods that create an EdgelLoop are also available and can be
found in the LEAPS reference manual [4].

Retrieving an EdgeLoop

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve an EdgeLoop with the following
code.

Lps: : EdgeLoopPtr edgelLoop;
edgelLoop = structure->get EdgeLoop ("el _la", 1);

Destroying an EdgeLoop

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy an EdgelLoop with the following
code.

structure->destroyEdgeLoop ("el _1la", 1);

Determining the Existence of an EdgeLoop

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if an EdgelLoop exists with the
following code.

If (structure->doesEdgeLoopExist ("el_1a", 1)
std::cout << "EdgelLoop Exists" << std::endl;

el se
std::cout << "EdgeLoop does NOT Exist" << std::endl;

Listing the EdgeLoops Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the EdgelLoops unique
identifiers that are contained within the Structure with the following code.

Lps: : Uni quel dLi st wui dLi st = structure->get U dsOf EdgeLoops ();
or a list of names and versions of the EdgeLoops with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = structure->get NaneVer si onPai r sOf EdgeLoops ();

UniqueldList is a type definition for a Standard Template Library (STL)

vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

37 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Creating a Face

A LEAPS Face is a trimmed NURBS surface. It is defined by a LEAPS
EdgeLoop that is the outer boundary of the Face and any number of non-
intersecting EdgeLoops that are holes in the Face. If structure is a
Structure object that has been retrieved from a Concept or a Component,
a program can create an Face with the following code.

/1 retrieve the EdgelLoop that is the outer boundary of the Face
Lps: : EdgeLoopPt r out er Loop;
out er Loop = structure->get EdgeLoop ("el _1a", 1);

/1 no holes — create enpty STL vector of EdgelLoops
Lps: : EdgeLoopPtrLi st innerLoops;

/1 create the Face
Lps:: FacePtr face;
face = structure->createfFace ("fal", 1, outerlLoop, innerlLoops);

Other methods that create a Face are also available and can be found in
the LEAPS reference manual [4].

Retrieving a Face

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a Face with the following code.

Lps:: FacePtr face;
face = structure->getFace ("fal", 1);

Destroying a Face

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a Face with the following code.

structure->destroyFace ("fal", 1);

Determining the Existence of a Face

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a Face exists with the following
code.

I f (structure->doesFaceExist ("fal", 1)
std::cout << "Face Exists" << std::endl;
el se
std::cout << "Face does NOT Exist" << std::endl;

Listing the Faces Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Faces unigue identifiers
that are contained within the Structure with the following code.

Lps: : Uni quel dLi st ui dLi st = structure->getU dsOf Faces ();

or a list of names and versions of the Faces with

38 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = structure->get NaneVer si onPai r sOf Faces ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating an OrientedClosedShell

A LEAPS OrientedClosedShell is a set of LEAPS Face objects that form a
closed shell that is oriented. If structure is a Structure object that has
been retrieved from a Concept or a Component, a program can create an
OrientedClosedShell with the following code.

/1 create a STL vector of the connected Faces

Lps:: FacePtrLi st connect edFaces;

connect edFaces. push_back (structure->getFace ("fal", 1));
connect edFaces. push_back (structure->getFace ("fa23", 1));
connect edFaces. push_back (structure->getFace ("fa29", 1));
connect edFaces. push_back (structure->getFace ("fal7", 1));
connect edFaces. push_back (structure->getFace ("fa3l", 1));
connect edFaces. push_back (structure->getFace ("fa9", 1));

/1 create the Orientedd osedShel l

Lps:: Ori entedC osedShel | Ptr shel | ;

shell = structure->createOientedd osedShell ("os_compl", 1,
connect edFaces)

Other methods that create an OrientedClosedShell are also available and
can be found in the LEAPS reference manual [4].

Retrieving an OrientedClosedShell

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve an OrientedClosedShell with the
following code.

Lps:: Ori entedC osedShel | Ptr shel | ;
shell = structure->getOientedd osedShell ("os_conmpl", 1);

Destroying an OrientedClosedShell

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy an OrientedClosedShell with the
following code.

structure->destroyOri ent edd osedShell ("os_compl", 1);

Determining the Existence of an OrientedClosedShell

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if an OrientedClosedShell exists
with the following code.

If (structure->doesOientedCd osedShel | Exi st ("os_compl", 1)
std::cout << "Orientedd osedShel | Exists" << std::endl;

39 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

el se
std::cout << "OrientedCl osedShel |l does NOT Exist" << std::endl;

Listing the OrientedClosedShells Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the OrientedClosedShells
unique identifiers that are contained within the Structure with the following
code.

Lps: : Uni quel dLi st ui dLi st;
ui dLi st = structure->getU dsO Ori ent edCl osedShel ls ();

or a list of names and versions of the OrientedClosedShells with

Lps: : NaneVer si onPai r Li st nvlLi st;
nvLi st = structure->get NameVer si onPai rsO Ori ent edd osedShel Is ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a Solid

A LEAPS Solid is a boundary-represented (BREP) solid. It is defined by
a LEAPS OrientedClosedShell object that is the outer boundary of the
Solid and any number of non-intersecting OrientedClosedShell objects
that are voids in the Solid. If structure is a Structure object that has been
retrieved from a Concept or a Component, a program can create a Solid
with the following code.

/1 retrieve the OientedC osedShell that is the outer boundary
/1 of the Solid

Lps:: Ori ent edd osedShel | Ptr outer Shel | ;

outerShell = structure->getOientedd osedShell ("os_conmpl", 1);

/1 no voids — create enpty STL vector of OientedC osedShells
Lps:: Ori ent edCl osedShel | PtrList voi dShells;

/1 create the Solid

Lps:: SolidPtr solid,

solid = structure->createSolid ("so_compl", 1, outerShell,
voi dShel | s);

Other methods that create a Solid are also available and can be found in
the LEAPS reference manual [4].

Retrieving a Solid

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a Solid with the following code.

Lps:: SolidPtr solid;
solid = structure->getSolid ("so_compl", 1);

DRAFT 40 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Destroying a Solid

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a Solid with the following code.

structure->destroySolid ("so_compl", 1);

Determining the Existence of a Solid

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a Solid exists with the following
code.

If (structure->doesSolidExist ("so_compl", 1)
std::cout << "Solid Exists" << std::endl;

el se
std::cout << "Solid does NOT Exist" << std::endl;

Listing the Solids Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Solids unigue identifiers
that are contained within the Structure with the following code.

Lps: : Uni quel dLi st uidList = structure->getUi dsOfSolids ();

or a list of names and versions of the Solids with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = structure->get NaneVersi onPai rsOf Solids ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a TopologicalView

A LEAPS TopologicalView is a view of the geometry that typically
represents traditional CAD entities. In particular, a TopologicalView is a
LEAPS Solid, Face, or Surface that has properties. If structure is a
Structure object that has been retrieved from a Concept or a Component,
a program can create a TopologicalView that is a Face with the following
code.

/1 retrieve the Face that the Topol ogi cal Vi ew represents
Lps:: FacePtr face;
face = structure->getFace ("fal7", 1);

/1 create the Topol ogi cal Vi ew

Lps: : Topol ogi cal ViewPtr tView,

tView = structure->createTopol ogi cal View ("topv_hulls_platel”, 1,
face);

Other methods that create a TopologicalView are also available and can
be found in the LEAPS reference manual [4].

41 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Retrieving a TopologicalView

DRAFT

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a TopologicalView with the
following code.

Lps: : Topol ogi cal ViewPtr tView,
t Vi ew = structure->get Topol ogi cal View ("topv_hulls_platel”, 1);

Destroying a TopologicalView

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a TopologicalView with the
following code.

structure->destroyTopol ogi cal View ("topv_hulls_platel”, 1);

Determining the Existence of a TopologicalView

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a TopologicalView exists with
the following code.

If (structure->doesTopol ogi cal Vi enExi st ("topv_hul Il s_platel”, 1)
std::cout << "Topol ogi cal Vi ew Exi sts" << std::endl;

el se
std::cout << "Topol ogi cal Vi ew does NOT Exist" << std::endl;

Listing the TopologicalViews Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the TopologicalViews unique
identifiers that are contained within the Structure with the following code.

Lps: : Uni quel dLi st ui dLi st;
ui dLi st = structure->getU dsO Topol ogi cal Views ();

or a list of names and versions of the TopologicalViews with

Lps: : NaneVer si onPai r Li st nvlLi st;
nvLi st = structure->get NameVer si onPai r sOf Topol ogi cal Views ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a CommonView

A LEAPS CommonView is group of LEAPS TopologicalView objects and
LEAPS CommonView objects that represent a logical view of the
geometry. If structure is a Structure object that has been retrieved from a
Concept or a Component, a program can create a CommonView with the
following code.

/'l retrieve Topol ogi cal Views that conpose the ComonVi ew
Lps: : Topol ogi cal Vi ewPtr Li st topVi ews;

42 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

t opVi ews. push_back (structure->get Topol ogi cal Vi ew

("topv_deckl_platel”, 1));
t opVi ews. push_back (structure->get Topol ogi cal Vi ew

("topv_deck2_platel”, 1));
t opVi ews. push_back (structure->get Topol ogi cal Vi ew

("topv_hul | p_platel", 1));
t opVi ews. push_back (structure->get Topol ogi cal Vi ew

("topv_hull s_platel”, 1));
t opVi ews. push_back (structure->get Topol ogi cal Vi ew

("topv_trans2_platel”, 1));
t opVi ews. push_back (structure->get Topol ogi cal Vi ew

("topv_trans2_plate2", 1));

/1 no ConmonViews that are a part of this CommonView — create
/1 enpty STL vector of CommonVi ews
Lps:: CommonVi ewsPt r Li st conMi ews;

/! create the CommopnVi ew
Lps: : ConmonVi ewPtr conmonVi ew;
conmonVi ew = structure->creat eConmonVi ew ("com/_conpl", 1,
t opVi ews, conVi ews);

Other methods that create a CommonView are also available and can be
found in the LEAPS reference manual [4].

Retrieving a CommonView

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a CommonView with the following
code.

Lps: : ConmonVi ewPtr conmonVi ew;
comonVi ew = structure->get ConmonVi ew ("conv_conpl”, 1);

Destroying a CommonView

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a CommonView with the following
code.

struct ure->destroyCommonVi ew ("conv_conmpl", 1);

Determining the Existence of a CommonView

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a CommonView exists with the
following code.

I f (structure->doesCommonVi ewkxi st ("conv_conpl", 1)
std::cout << "CommonVi ew Exi sts" << std::endl;

el se
std::cout << "CommopnVi ew does NOT Exist" << std::endl;

Listing the CommonViews Contained in a Structure

If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the CommonViews unique
identifiers that are contained within the Structure with the following code.

DRAFT 43 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Lps: : Uni quel dLi st ui dLi st = structure->get U dsO ConmonVi ews ();

or a list of names and versions of the CommonViews with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = structure->get NaneVer si onPai r sO CommonVi ews () ;

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing Materials for LEAPS Objects

DRAFT

Materials are represented by LEAPS Material objects and LEAPS
MaterialGroup objects. These objects are associated with the the LEAPS
Structure class, the LEAPS CommonView class, and the LEAPS
TopologicalView class. These classes manage LEAPS Material and
MaterialGroup objects that are associated with them. These classes
have member methods that provide various functions that involve Material
and MaterialGroup objects. These member methods can:

Create a Material or MaterialGroup object,

Retrieve a Material or MaterialGroup object,

Destroy a Material or MaterialGroup object,

Determine the existence of a Material or MaterialGroup object,
and

List Material and MaterialGroup objects that are managed by
the class.

Creating a Material for a LEAPS Object

If the LEAPS object has materials, a method with the name
“createMaterial” is available to create a Material. If structure is a LEAPS
Structure object that has been retrieved from a Concept, a program can
create a Material to be associated with the structure with the following
code.

/1 create material for the structure
Lps:: Material Ptr hySteel;
hySteel = structure->createMaterial ("hySteel", 1);

Retrieving a Material for a LEAPS Object

If the LEAPS object has materials, a method with the name “getMaterial”
is available to retrieve a Material. If structure is a LEAPS Structure object
that has been retrieved from a Concept, a program can retrieve a Material
that has been associated with the structure with the following code.

Lps:: Material Ptr hySteel;
hySteel = structure->getMterial ("hySteel", 1);

44 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Destroying a Material for a LEAPS Object

If the LEAPS object has materials, a method with the name
“destroyMaterial” is available to destroy a Material. If structure is a
LEAPS Structure object that has been retrieved from a Concept, a
program can destroy a Material that has been associated with the
structure with the following code.

structure->destroyMaterial ("hySteel", 1);

Determining the Existence of a Material for a LEAPS Object

If the LEAPS object has materials, a method with the name
“doesMaterialExists” is available to determine if a Material is associated
with the LEAPS object. If structure is a LEAPS Structure object that has
been retrieved from a Concept, a program can determine if a Material is
associated with the structure with the following code.

If (structure->doesMaterial Exi st ("hySteel", 1)
std::cout << "Material Exists" << std::endl;

el se
std::cout << "Material does NOT Exist" << std::endl;

Listing the Materials Managed by a LEAPS Object

If the LEAPS object has materials, a method with the name
“getUidsOfMaterials” is available to retrieve a list of the unique identifiers
of the Material objects that are associated with the LEAPS object. If
structure is a LEAPS Structure object that has been retrieved from a
Concept, a program can retrieve the list of unique identifiers of the
Material objects associated with the structure with the following code.

Lps: : Uni quel dLi st ui dLi st = structure->getUi dsO Materials ();

or a list of names and versions of the Material objects with

Lps: : NaneVer si onPai r Li st nvLi st;
nvLi st = structure->get NameVersi onPairsOf Materials ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a MaterialGroup for a LEAPS Object

If the LEAPS object has materials, a method with the name
“createMaterialGroup” is available to create a MaterialGroup. If structure
is a LEAPS Structure object that has been retrieved from a Concept, a
program can create a MaterialGroup to be associated with structure with
the following code.

/1 create a material group for a conposite for the structure
Lps:: Material G oupPtr conposite;
conposite = structure->createMaterial Goup ("Conposite", 1,);

45 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Retrieving a MaterialGroup for a LEAPS Object

If the LEAPS object has materials, a method with the name
“getMaterialGroup” is available to retrieve a MaterialGroup. If structure is
a LEAPS Structure object that has been retrieved from a Concept, a
program can retrieve a MaterialGroup that has been associated with the
structure with the following code.

Lps:: Material G oupPtr conposite;
conposite = structure->getMterial Goup ("Conposite", 1);

Destroying a MaterialGroup for a LEAPS Object

If the LEAPS object has materials, a method with the name
“destroyMaterialGroup” is available to destroy a MaterialGroup. If
structure is a LEAPS Structure object that has been retrieved from a
Concept, a program can destroy a MaterialGroup that has been
associated with the structure with the following code.

structure->destroyMaterial G oup ("Conposite", 1);

Determining the Existence of a MaterialGroup for a LEAPS
Object

If the LEAPS object has materials, a method with the name
“doesMaterialGroupExists” is available to determine if a MaterialGroup is
associated with the LEAPS object. If structure is a LEAPS Structure
object that has been retrieved from a Concept, a program can determine
if a MaterialGroup is associated with the structure with the following code.

If (structure->doesMaterial GoupExist ("Conposite", 1)
std::cout << "Material Goup Exists" << std::endl;

el se
std::cout << "Material Goup does NOT Exist" << std::endl;

Listing the MaterialGroups Managed by a LEAPS Object

If the LEAPS object has materials, a method with the name
“getUidsOfMaterialGroups” is available to retrieve a list of the unique
identifiers of the MaterialGroup objects that are associated with the
LEAPS object. If structure is a LEAPS Structure object that has been
retrieved from a Concept, a program can retrieve the list of unique
identifiers of the MaterialGroup objects associated with the structure with
the following code.

Lps: : Uni quel dLi st ui dLi st = structure->getU dsO Materi al Goups ();
or a list of names and versions of the MaterialGroup objects with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = structure->get NaneVer si onPai rsOf Mat eri al G oups ();

UniqueldList is a type definition for a Standard Template Library (STL)

vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

DRAFT 46 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Managing Properties for LEAPS Objects

DRAFT

Properties are represented by LEAPS Property objects and LEAPS
PropertyGroup objects. These objects are associated with the primary
LEAPS classes, the LEAPS Structure class, the LEAPS CommonView
class, and the LEAPS TopologicalView class. These classes manage
LEAPS Property and PropertyGroup objects that are associated with
them. These classes have member methods that provide various
functions that involve Property and PropertyGroup objects. These
member methods can:

Create a Property or PropertyGroup object,

Retrieve a Property or PropertyGroup object,

Destroy a Property or PropertyGroup object,

Determine the existence of a Property or PropertyGroup
object, and

List Property and PropertyGroup objects that are managed by
the class.

Creating a Property for a LEAPS Object

If the LEAPS object has properties, a method with the name
“createProperty” is available to create a Property. If concept is a LEAPS
Concept object that has been retrieved from a Study, a program can
create a Property to be associated with concept with the following code.

/1 create the PropertyData that contains design waterline
Lps:: PropertyDataPtr dw = new Lps:: Real Scal ar (25.5);

/1 create design waterline property for the concept
Lps:: PropertyPtr dw Prop;
dw Prop = concept->createProperty ("DW", 1, dw);

Retrieving a Property for a LEAPS Object

If the LEAPS object has properties, a method with the name “getProperty”
is available to retrieve a Property. If conceptis a LEAPS Concept object
that has been retrieved from a Study, a program can retrieve a Property
that has been associated with the concept with the following code.

Lps:: PropertyPtr dw Prop;
dw Prop = concept->getProperty ("DAL", 1);

Destroying a Property for a LEAPS Object

If the LEAPS object has properties, a method with the name
“destroyProperty” is available to destroy a Property. If conceptis a
LEAPS Concept object that has been retrieved from a Study, a program
can destroy a Property that has been associated with the concept with the
following code.

concept - >destroyProperty ("DW", 1);

47 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Determining the Existence of a Property for a LEAPS
Object

If the LEAPS object has properties, a method with the name
“doesPropertyExists” is available to determine if a Property is associated
with the LEAPS object. If concept is a LEAPS Concept object that has
been retrieved from a Study, a program can determine if a Property is
associated with the concept with the following code.

I f (concept->doesPropertyExi st ("DW", 1)
std::cout << "Property Exists" << std::endl;
el se
std::cout << "Property does NOT Exist" << std::endl;

Listing the Properties Managed by a LEAPS Object

If the LEAPS object has properties, a method with the name
“getUidsOfProperties” is available to retrieve a list of the unique identifiers
of the Property objects that are associated with the LEAPS object. If
concept is a LEAPS Concept object that has been retrieved from a Study,
a program can retrieve the list of unique identifiers of the Property objects
associated with the concept with the following code.

Lps: : Uni quel dLi st ui dLi st = concept ->get U dsO Properties ();
or a list of names and versions of the Property objects with

Lps: : NaneVer si onPai r Li st nvlLi st;
nvLi st = concept - >get NanmeVer si onPai r sOf Properties ();

UniqueldList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a PropertyGroup for a LEAPS Object

If the LEAPS object has properties, a method with the name
“createPropertyGroup” is available to create a PropertyGroup. If concept
is a LEAPS Concept object that has been retrieved from a Study, a
program can create a PropertyGroup to be associated with concept with
the following code.

/'l retrieve properties needed to create property group

Lps:: PropertyPtrList propList;

proplLi st. push_back (concept->get PropertyGoup ("aftPerpAtRdr", 1);
propLi st. push_back (concept->getPropertyGoup ("aftPerpAtDw", 1);

/1 no PropertyGroups that are a part of this PropertyGoup —
/'l create enpty STL vector of PropertyG oups
Lps:: PropertyG oupPtrLi st propG ouplist;

/1 create a property group for aft perpendicul ar view for
/1 the concept
Lps:: PropertyG oupPtr aft Perp;
aft Perp = concept->createPropertyGoup ("AftPerp", 1,
proplLi st, propG ouplist);

48 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Retrieving a PropertyGroup for a LEAPS Object

If the LEAPS object has properties, a method with the name
“getPropertyGroup” is available to retrieve a PropertyGroup. If concept is
a LEAPS Concept object that has been retrieved from a Study, a program
can retrieve a PropertyGroup that has been associated with the concept
with the following code.

Lps:: PropertyG oupPtr aft Perp;
aft Perp = concept->get PropertyGoup ("AftPerp", 1);

Destroying a PropertyGroup for a LEAPS Object

If the LEAPS object has properties, a method with the name
“destroyPropertyGroup” is available to destroy a PropertyGroup. If
concept is a LEAPS Concept object that has been retrieved from a Study,
a program can destroy a PropertyGroup that has been associated with
the concept with the following code.

concept - >destroyPropertyG oup ("AftPerp", 1);

Determining the Existence of a PropertyGroup for a LEAPS
Object

If the LEAPS object has properties, a method with the name
“doesPropertyGroupExists” is available to determine if a PropertyGroup is
associated with the LEAPS object. If concept is a LEAPS Concept object
that has been retrieved from a Study, a program can determine if a
PropertyGroup is associated with the concept with the following code.

I f (concept->doesPropertyG oupExi st ("AftPerp", 1)
std::cout << "PropertyGoup Exists" << std::endl;

el se
std::cout << "PropertyG oup does NOT Exist" << std::endl;

Listing the PropertyGroups Managed by a LEAPS Object

If the LEAPS object has properties, a method with the name
“getUidsOfPropertyGroups” is available to retrieve a list of the unique
identifiers of the PropertyGroup objects that are associated with the
LEAPS object. If concept is a LEAPS Concept object that has been
retrieved from a Study, a program can retrieve the list of unique identifiers
of the PropertyGroup objects associated with the concept with the
following code.

Lps: : Uni quel dLi st ui dLi st = concept->get Ui dsOf PropertyG oups ();
or a list of names and versions of the PropertyGroup objects with

Lps: : NaneVer si onPai r Li st nvLi st ;
nvLi st = concept - >get NaneVer si onPai r sO Propert yGroups ();

UniqueldList is a type definition for a Standard Template Library (STL)

vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

49 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 50 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

DETERMINING THE CONTENTS OF LEAPS OBJECTS

Determining the Contents of a LEAPS Database

A LEAPS Factory is created to manage a LEAPS database. Atthe
highest level, a LEAPS database is composed of Study objects and
Catalog objects. Currently methods associated with Catalog objects have
not been implemented. If ‘leapsDB’ is a Factory created to manage a
LEAPS database, the following code returns the number of Study objects
contained in the database, lists the unique identifiers of the objects, and
then retrieves them individually.

/1 find how many studies are in the LEAPS dat abase

Lps:: U nt 32 studyCount;

studyCount = | eapsDB- >nunber O St udi es ();

std::cout << "Nunmber of Studies: " << studyCount << std::endl;

/1 get unique identifiers of the studies in the LEAPS database and

/1 print them

Lps: : Uni quel dLi st ui dLi st = | eapsDB->get Ui dsOf Studies ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Study " << *it << std::endl;

/1 given the list of unique identifiers, retrieve studies

/1 individually and store in a STL vector of StudyPtr

Lps:: StudyPtrList studies;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
st udi es. push_back (| eapsDB->get Study (*it));

Determining the Contents of a LEAPS Study Object

DRAFT

A LEAPS Study is composed of Concept objects, Scenario objects,
Property objects, and PropertyGroup objects. If ‘cvxStudy’ is a Study that
has been retrieved from a database, the contents of the Study object can
be queried and retrieved.

Determining the Concepts of a Study Object

The following code returns the number of Concept objects contained by
the Study object ‘cvxStudy”, lists the unique identifiers of the Concept
objects, and then retrieves them individually.

/1 find how many concepts are in the Study object

Lps:: Ui nt32 concept Count;

concept Count = cvxStudy- >nunber O Concepts ();

std::cout << "Nunber of Concepts: " << conceptCount << std::endl;

/1 get unique identifiers of the concepts in the Study and

/1 print them

Lps: : Uni quel dLi st ui dLi st = cvxStudy->get Ui dsCf Concepts ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Concept " << *it << std::endl;

51 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

/1 given the list of unique identifiers, retrieve concepts

/1 individually and store in a STL vector of ConceptPtr

Lps:: Concept PtrLi st concepts;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
concept s. push_back (cvxStudy->get Concept (*it));

Determining the Scenarios of a Study Object

The following code returns the number of Scenario objects contained by
the Study object ‘cvxStudy”, lists the unique identifiers of the Scenario
objects, and then retrieves them individually.

/1 find how many scenarios are in the Study object

Lps:: U nt32 scenarioCount;

scenari oCount = cvxStudy->nunber Of Scenarios ();

std::cout << "Nunmber of Scenarios: " << scenari oCount
<< std::endl;

/1 get unique identifiers of the scenarios in the Study and

/1 print them

Lps: : Uni quel dLi st ui dLi st = cvxStudy->get Ui dsCOf Scenari os ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Scenario " << *it << std::endl;

/1 given the list of unique identifiers, retrieve scenarios
/1 individually and store in a STL vector of ScenarioPtr
Lps:: ScenarioPtrList scenarios;

for (it = uidList.begin () ; it !'= uidList.end ()

;o i)
scenari os. push_back (cvxStudy->getScenario (*it));

Determining the Properties of a Study Object

The following code returns the number of Property objects contained by
the Study object ‘cvxStudy”, lists the unique identifiers of the Property
objects, and then retrieves them individually.

/1 find how many propertys are in the Study object

Lps:: Ui nt32 propertyCount;

propertyCount = cvxStudy->nunber Of Properties ();

std::cout << "Nunmber of Properties: " << propertyCount
<< std::endl;

/1 get unique identifiers of the properties in the Study and

/1 print them

Lps: : Uni quel dLi st ui dLi st = cvxStudy->get Ui dsOf Properties ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Property " << *it << std::endl;

/1 given the list of unique identifiers, retrieve properties

/1 individually and store in a STL vector of PropertyPtr

Lps:: PropertyPtrList properties;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
properties. push_back (cvxStudy->getProperty (*it));

52 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Determining the PropertyGroups of a Study Object

The following code returns the number of PropertyGroup objects
contained by the Study object ‘cvxStudy”, lists the unique identifiers of the
PropertyGroup objects, and then retrieves them individually.

/1 find how many propertyG oups are in the Study object

Lps:: Ui nt32 propertyG oupCount;

propertyG oupCount = cvxStudy- >nunber O PropertyG oups ();

std::cout << "Nunber of PropertyGoups: " << propertyG oupCount
<< std::endl;

/1 get unique identifiers of the propertyGoups in the Study and

/1 print them

Lps: : Uni quel dLi st wui dLi st = cvxStudy->get Ui dsCf PropertyG oups ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "PropertyGoup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve propertyG oups

/1 individually and store in a STL vector of PropertyG oupPtr

Lps:: PropertyG oupPtrLi st propertyG oups;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
propertyG oups. push_back (cvxStudy->getPropertyGoup (*it));

Determining the Contents of a LEAPS Concept Object

DRAFT

A LEAPS Concept is composed of Component objects, System objects,
Property objects, PropertyGroup objects, and a concept Structure object.
If ‘cvx’ is a Concept that has been retrieved from a Study, the contents of
the Concept object can be queried and retrieved.

Determining the Components of a Concept Object

The following code returns the number of Component objects contained
by the Concept object ‘cvx”, lists the unique identifiers of the Component
objects, and then retrieves them individually.

/1 find how many conponents are in the Concept object

Lps:: U nt 32 conponent Count ;

conponent Count = cvx->nunber O Conponents ();

std::cout << "Number of Conponents: " << conponent Count
<< std::endl;

/1 get unique identifiers of the conmponents in the Concept and

/1 print them

Lps: : Uni quel dLi st ui dLi st = cvx->get U dsO Conponents ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Concept " << *it << std::endl;

/1 given the list of unique identifiers, retrieve conponents

/1 individually and store in a STL vector of ConponentPtr

Lps: : Conponent PtrLi st conmponents;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
conponent s. push_back (cvx->get Conponent (*it));

53 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Determining the Systems of a Concept Object

The following code returns the number of System objects contained by
the Concept object ‘cvx”, lists the unique identifiers of the System objects,
and then retrieves them individually.

/1 find how many systens are in the Concept object

Lps:: Ui nt32 systenCount;

syst enCount = cvx->nunber O Systens ();

std::cout << "Nunber of Systems: " << systenCount
<< std::endl;

/1 get unique identifiers of the systens in the Concept and

/1 print them

Lps: : Uni quel dLi st ui dLi st = cvx->get U dsOf Systens ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Concept " << *it << std::endl;

/1 given the list of unique identifiers, retrieve systens

/1 individually and store in a STL vector of SystenPtr

Lps:: SystenPtrLi st systens;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
systens. push_back (cvx->getSystem (*it));

Determining the Properties of a Concept Object

The following code returns the number of Property objects contained by
the Concept object ‘cvx’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

/1 find how many properties are in the Concept object

Lps:: Ui nt32 propertyCount;

propertyCount = cvx->nunber Of Properties ();

std::cout << "Nunber of Properties: " << propertyCount
<< std::endl;

/1 get unique identifiers of the properties in the Concept and

/1 print them

Lps: : Uni quel dLi st ui dLi st = cvx->get U dsO Properties ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
std::cout << "Property " << *it << std::endl;

/1 given the list of unique identifiers, retrieve properties

/1 individually and store in a STL vector of PropertyPtr

Lps:: PropertyPtrList properties;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
properties. push_back (cvx->getProperty (*it));

Determining the PropertyGroups of a Concept Object

The following code returns the number of PropertyGroup objects
contained by the Concept object ‘cvx’, lists the unique identifiers of the
PropertyGroup objects, and then retrieves them individually.

/1 find how many propertyG oups are in the Concept object

Lps:: Ui nt32 propertyG oupCount;

propertyG oupCount = cvx->nunber O PropertyG oups ();

std::cout << "Nunber of PropertyGoups: " << propertyG oupCount

54 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

<< std::endl;

/1 get unique identifiers of the propertyGoups in the Concept and

/1 print them

Lps: : Uni quel dLi st ui dLi st = cvx->get U dsOf PropertyG oups ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "PropertyGoup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve propertyG oups

/1 individually and store in a STL vector of PropertyGoupPtr

Lps:: PropertyG oupPtrLi st propertyG oups;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
propertyG oups. push_back (cvx->getPropertyGoup (*it));

Retrieving a Concept’s Structure

The following code retrieves the concept’s structure from the Concept
object ‘cvx’ that has been retrieved from a Study.

Lps::StructurePtr cvxStructure;
cvxStructure = cvx->get ConceptStructure ();

Determining the Contents of a LEAPS Component

Object

A LEAPS Component is composed of Property objects, PropertyGroup
objects, and a component Structure object. If ‘pump’ is a Component
that has been retrieved from a Concept, the contents of the Component
object can be queried and retrieved.

Determining the Properties of a Component Object

DRAFT

The following code returns the number of Property objects contained by
the Component object ‘pump’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

/1 find how many properties are in the Conponent object

Lps:: U nt32 propertyCount;

propertyCount = punp->nunber O Properties ();

std::cout << "Number of Properties: " << propertyCount
<< std::endl;

/1 get unique identifiers of the properties in the Conponent and

/1 print them

Lps: : Uni quel dLi st ui dLi st = punp->get Ui dsOf Properties ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end ()
std::cout << "Property " << *it << std::endl;

++it)

/1 given the list of unique identifiers, retrieve properties

/1 individually and store in a STL vector of PropertyPtr

Lps:: PropertyPtrList properties;

for (it = uidList.begin () ; it !'= uidList.end ()
properties. push_back (punp->getProperty (*it));

++it)

55 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Determining the PropertyGroups of a Component Object

The following code returns the number of PropertyGroup objects
contained by the Component object ‘pump’, lists the unique identifiers of
the PropertyGroup objects, and then retrieves them individually.

/1 find how many propertyG oups are in the Conmponent object

Lps:: Ui nt32 propertyG oupCount;

propertyG oupCount = punp->nunber Of PropertyG oups ();

std::cout << "Nunber of PropertyGoups: " << propertyG oupCount
<< std::endl;

/1 get unique identifiers of the propertyGoups in the

/1 Component and print them

Lps: : Uni quel dLi st ui dLi st = punp->get U dsO PropertyG oups ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "PropertyGoup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve propertyG oups

/1 individually and store in a STL vector of PropertyG oupPtr

Lps:: PropertyG oupPtrLi st propertyG oups;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
propertyG oups. push_back (punp->getPropertyGoup (*it));

Retrieving a Component’s Structure

The following code retrieves the component’s structure from the
Component object ‘pump’ that has been retrieved from a Concept.

Lps:: StructurePtr punpStructure;
punpStructure = punp->get Conponent Structure ();

Determining the Contents of a LEAPS System Object

A LEAPS System is composed of Property objects, PropertyGroup
objects, Diagram objects, and an aggregate Component object. The
aggregate component is a Component object that represents the System
as a component. Currently, the methods to access Diagram objects and
the aggregate Component object is not implemented. If ‘fireMain’ is a
System that has been retrieved from a Concept, the contents of the
System object can be queried and retrieved.

Determining the Properties of a System Object

The following code returns the number of Property objects contained by
the System object ‘fireMain’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

/1 find how many properties are in the System object

Lps:: Ui nt32 propertyCount;

propertyCount = fireMin->nunber O Properties ();

std::cout << "Nunber of Properties: " << propertyCount
<< std::endl;

/1 get unique identifiers of the properties in the System and

/1 print them
Lps: : Uni quel dLi st wui dLi st = fireMin->get U dsOf Properties ();

DRAFT 56 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Lps::UniqueldList::iterator it;
for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Property " << *it << std::endl;

/1 given the list of unique identifiers, retrieve properties

/1 individually and store in a STL vector of PropertyPtr

Lps:: PropertyPtrList properties;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
properties. push_back (fireMin->getProperty (*it));

Determining the PropertyGroups of a System Object

The following code returns the number of PropertyGroup objects
contained by the System obiject ‘fireMain’, lists the unique identifiers of
the PropertyGroup objects, and then retrieves them individually.

/1 find how many propertyG oups are in the System object

Lps:: Ui nt32 propertyG oupCount;

propertyG oupCount = fireMin->nunber O PropertyG oups ();

std::cout << "Nunber of PropertyGoups: " << propertyG oupCount
<< std::endl;

/1 get unique identifiers of the propertyGoups in the

/1 Systemand print them

Lps: : Uni quel dLi st wui dLi st = fireMain->get U dsOf PropertyG oups ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "PropertyGoup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve propertyG oups

/1 individually and store in a STL vector of PropertyG oupPtr

Lps:: PropertyG oupPtrList propertyG oups;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
propertyG oups. push_back (fireMin->getPropertyGoup (*it));

Determining the Contents of a LEAPS Scenario Object

A LEAPS Scenario is currently composed of Property objects and
PropertyGroup objects. The LEAPS Scenario class will be expanded in
the future. If ‘planA’ is a Scenario that has been retrieved from a Study,
the contents of the Scenario object can be queried and retrieved.

Determining the Properties of a Scenario Object

The following code returns the number of Property objects contained by
the Scenario object ‘planA’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

/1 find how many properties are in the Scenario object

Lps:: Ui nt32 propertyCount;

propertyCount = pl anA->nunber O Properties ();

std::cout << "Number of Properties: " << propertyCount
<< std::endl;

/1 get unique identifiers of the properties in the Scenario and

/1 print them

Lps: : Uni quel dLi st ui dLi st = pl anA->get Ui dsOf Properties ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Property " << *it << std::endl;

DRAFT 57 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

/1 given the list of unique identifiers, retrieve properties

/1 individually and store in a STL vector of PropertyPtr

Lps:: PropertyPtrList properties;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
properties. push_back (planA->getProperty (*it));

Determining the PropertyGroups of a Scenario Object

The following code returns the number of PropertyGroup objects
contained by the Scenario object ‘planA’, lists the unigque identifiers of the
PropertyGroup objects, and then retrieves them individually.

/1 find how many propertyG oups are in the Scenario object

Lps:: U nt32 propertyG oupCount;

propertyG oupCount = pl anA- >nunber O PropertyG oups ();

std::cout << "Nunber of PropertyGoups: " << propertyG oupCount
<< std::endl;

/1 get unique identifiers of the propertyGoups in the

/1 Scenario and print them

Lps: : Uni quel dLi st ui dLi st = pl anA->get Ui dsOf PropertyG oups () ;

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "PropertyGoup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve propertyG oups

/1 individually and store in a STL vector of PropertyG oupPtr

Lps:: PropertyG oupPtrLi st propertyG oups;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
propertyG oups. push_back (pl anA->get PropertyGoup (*it));

Determining the Contents of a LEAPS Structure Object

A LEAPS Structure is composed or has the following LEAPS objects:

- Property objects,
PropertyGroup objects,
Material objects,
MaterialGroup objects,
CommonView objects,
TopologicalView objects,
Solid objects,
OrientedClosedShell objects,
Face objects,
EdgelLoop objects,
CoEdge obijects,
Edge objects,
CoPoint objects,
Ppoint objects,
Pcurve objects, and
Surface objects.

A Structure object represents the geometry and the views of the geometry
of either a Concept or a Component. If ‘geom’ is a Structure object that

DRAFT 58 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

was retrieved from a Concept or Component object, the contents of the
Structure object can be queried and retrieved.

Determining the Properties of a Structure Object

The following code returns the number of Property objects contained by
the Structure object ‘geom’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

/1 find how many properties are in the Structure object

Lps:: Ui nt32 propertyCount;

propertyCount = geom >nunber O Properties ();

std::cout << "Nunber of Properties: " << propertyCount
<< std::endl;

/1 get unique identifiers of the properties in the Structure and

/1 print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsOf Properties ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Property " << *it << std::endl;

/1 given the list of unique identifiers, retrieve properties

/1 individually and store in a STL vector of PropertyPtr

Lps:: PropertyPtrList properties;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
properties. push_back (geom >getProperty (*it));

Determining the PropertyGroups of a Structure Object

The following code returns the number of PropertyGroup objects
contained by the Structure object ‘geom’, lists the unique identifiers of the
PropertyGroup objects, and then retrieves them individually.

/1 find how many propertyGoups are in the Structure object

Lps:: U nt32 propertyG oupCount;

propertyG oupCount = geom >nunber O PropertyG oups ();

std::cout << "Nunber of PropertyGoups: " << propertyG oupCount
<< std::endl;

/1 get unique identifiers of the propertyGoups in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsOf PropertyG oups ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "PropertyGoup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve propertyG oups

/1 individually and store in a STL vector of PropertyG oupPtr

Lps:: PropertyG oupPtrList propertyG oups;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
propertyG oups. push_back (geom >get PropertyGoup (*it));

Determining the Materials of a Structure Object

The following code returns the number of Material objects contained by
the Structure object ‘geom’, lists the unique identifiers of the Material
objects, and then retrieves them individually.

/1 find how many materials are in the Structure object

59 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Lps:: Ui nt32 material Count;

mat eri al Count = geom >nunber O Materials ();

std::cout << "Nunmber of Materials: " << material Count
<< std::endl;

/1 get unique identifiers of the materials in the Structure and

/1 print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsCOf Materials ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Material " << *it << std::endl;

/1 given the list of unique identifiers, retrieve materials

/1 individually and store in a STL vector of Material Ptr

Lps:: Material PtrList material s;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
mat eri al s. push_back (geom >getMaterial (*it));

Determining the MaterialGroups of a Structure Object

The following code returns the number of MaterialGroup objects
contained by the Structure object ‘geom’, lists the unique identifiers of the
MaterialGroup objects, and then retrieves them individually.

/1 find how many material Goups are in the Structure object

Lps:: Ui nt32 material GoupCount;

mat eri al G oupCount = geom >nunber Of Mat eri al Groups ();

std::cout << "Number of Material Goups: " << material G oupCount
<< std::endl;

/1 get unique identifiers of the material Goups in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsOf Materi al G oups ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Material Goup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve material G oups
/1 individually and store in a STL vector of Material GoupPtr
Lps:: Material GoupPtrLi st material Goups;
for (it = uidList.begin () ; it !'=uidList.end () ; ++it)

mat eri al G oups. push_back (geom >getMaterial Goup (*it));

Determining the CommonViews of a Structure Object

The following code returns the number of CommonView objects
contained by the Structure object ‘geom’, lists the unique identifiers of the
CommonView objects, and then retrieves them individually.

/1 find how many commonViews are in the Structure object

Lps:: Ui nt 32 commonVi ewCount ;

conmonVi ewCount = geom >nunber O CormonVi ews () ;

std::cout << "Number of ConmmonViews: " << commonVi ewCount
<< std::endl;

/1 get unique identifiers of the cormonViews in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsOf CormonVi ews () ;

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "CommonView " << *it << std::endl;

60 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

/1 given the list of unique identifiers, retrieve comonVi ews
/1 individually and store in a STL vector of ConmonVi ewPtr
Lps: : ConmonVi ewPt r Li st conmonVi ews;

for (it = uidList.begin () ; it !'= uidList.end ()

;i)
conmonVi ews. push_back (geom >get CormonView (*it));

Determining the TopologicalViews of a Structure Object

The following code returns the number of TopologicalView objects
contained by the Structure object ‘geom’, lists the unique identifiers of the
TopologicalView objects, and then retrieves them individually.

/1 find how many topol ogical Views are in the Structure object
Lps:: Ui nt 32 topol ogi cal Vi emCount ;
t opol ogi cal Vi emCount = geom >nunber O Topol ogi cal Views ();
std::cout << "Nunber of Topol ogi cal Vi ews:

<< topol ogi cal Vi ewCount << std::endl;

/1 get unique identifiers of the topological Views in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsCf Topol ogi cal Views ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Topological View" << *it << std::endl;

/1 given the list of unique identifiers, retrieve topol ogical Views
/1 individually and store in a STL vector of Topol ogi cal Vi ewPtr
Lps: : Topol ogi cal Vi ewPt r Li st topol ogi cal Vi ews;
for (it = uidList.begin () ; it !'=uidList.end () ; ++it)

t opol ogi cal Vi ews. push_back (geom >get Topol ogi cal View (*it));

Determining the Solids of a Structure Object

The following code returns the number of Solid objects contained by the
Structure object ‘geom’, lists the unique identifiers of the Solid objects,
and then retrieves them individually.

/1 find how many solids are in the Structure object
Lps:: Ui nt32 solidCount;
sol i dCount = geom >nunber O Solids ();
std::cout << "Nunmber of Solids: " << solidCount
<< std::endl;

/1 get unique identifiers of the solids in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsCf Solids ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Solid " << *it << std::endl;

/1 given the list of unique identifiers, retrieve solids

/1 individually and store in a STL vector of SolidPtr

Lps:: SolidPtrList solids;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
sol i ds. push_back (geom >getSolid (*it));

61 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Determining the OrientedClosedShells of a Structure
Object

The following code returns the number of OrientedClosedShell objects
contained by the Structure object ‘geom’, lists the unique identifiers of the
OrientedClosedShell objects, and then retrieves them individually.

/1 find how many orientedC osedShells are in the Structure object
Lps:: Ui nt32 orientedd osedShel | Count;
ori ent edC osedShel | Count = geom >nunber O Ori ent edd osedShel I's ();
std::cout << "Number of OientedC osedShells: "

<< orientedC osedShel | Count << std::endl;

/1 get unique identifiers of the orientedC osedShells in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsO Ori ent edd osedShel | s

0

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "OrientedC osedShell " << *it << std::endl;

/1 given the list of unique identifiers, retrieve

ori entedC osedShel | s

/1 individually and store in a STL vector of

Oi entedd osedShel | Ptr

Lps:: Orientedd osedShel | PtrList orientedC osedShel | s;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)

ori ent edd osedShel | s. push_back
(geom >get Ori ent edCl osedShel | (*it));
}

Determining the Faces of a Structure Object

The following code returns the number of Face objects contained by the
Structure object ‘geom’, lists the unique identifiers of the Face objects,
and then retrieves them individually.

/1 find how many faces are in the Structure object
Lps:: Ui nt32 faceCount;
faceCount = geom >nunber O Faces ();
std::cout << "Number of Faces: " << faceCount
<< std::endl;

/1 get unique identifiers of the faces in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get U dsOf Faces ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Face " << *it << std::endl;

/1 given the list of unique identifiers, retrieve faces

/1 individually and store in a STL vector of FacePtr

Lps: : FacePtrlList faces;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
faces. push_back (geom >get Face (*it));

62 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Determining the EdgelLoops of a Structure Object

The following code returns the number of EdgeLoop objects contained by
the Structure object ‘geom’, lists the unique identifiers of the EdgeLoop
objects, and then retrieves them individually.

/1 find how many edgelLoops are in the Structure object

Lps:: Ui nt 32 edgelLoopCount;

edgeLoopCount = geom >nunber O EdgeLoops ();

std::cout << "Nunber of EdgelLoops: " << edgelLoopCount
<< std::endl;

/1 get unique identifiers of the edgeLoops in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsCf EdgeLoops () ;

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "EdgeLoop " << *it << std::endl;

/1 given the list of unique identifiers, retrieve edgelLoops

/1 individually and store in a STL vector of EdgeLoopPtr

Lps: : EdgeLoopPtrLi st edgelLoops;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
edgeLoops. push_back (geom >get EdgeLoop (*it));

Determining the CoEdges of a Structure Object

The following code returns the number of CoEdge objects contained by
the Structure object ‘geom’, lists the unique identifiers of the CoEdge
objects, and then retrieves them individually.

/1 find how many coEdges are in the Structure object

Lps:: Ui nt32 coEdgeCount;

coEdgeCount = geom >nunber Of CoEdges ();

std::cout << "Nunber of CoEdges: " << coEdgeCount
<< std::endl;

/1 get unique identifiers of the coEdges in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsOf CoEdges () ;

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
std::cout << "CoEdge " << *it << std::endl;

/1 given the list of unique identifiers, retrieve coEdges

/1 individually and store in a STL vector of CoEdgePtr

Lps: : CoEdgePtrLi st coEdges;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
coEdges. push_back (geom >get CoEdge (*it));

Determining the Edges of a Structure Object

The following code returns the number of Edge objects contained by the
Structure object ‘geom’, lists the unique identifiers of the Edge objects,
and then retrieves them individually.

/1 find how many edges are in the Structure object
Lps:: Ui nt 32 edgeCount;

edgeCount = geom >nunber O Edges ();

std::cout << "Nunber of Edges: " << edgeCount

DRAFT 63 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

<< std::endl;

/1 get unique identifiers of the edges in the

/1 Structure and print them

Lps:: Uni quel dLi st ui dLi st = geom >get U dsCf Edges () ;

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Edge " << *it << std::endl;

/1 given the list of unique identifiers, retrieve edges

/1 individually and store in a STL vector of EdgePtr

Lps: : EdgePtrLi st edges;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
edges. push_back (geom >get Edge (*it));

Determining the CoPoints of a Structure Object

The following code returns the number of CoPoint objects contained by
the Structure object ‘geom’, lists the unique identifiers of the CoPoint
objects, and then retrieves them individually.

/1 find how many coPoints are in the Structure object

Lps: : Ui nt 32 coPoi nt Count ;

coPoi nt Count = geom >nunber O CoPoi nts ();

std::cout << "Number of CoPoints: " << coPoi nt Count
<< std::endl;

/1 get unique identifiers of the coPoints in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsCf CoPoi nts ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "CoPoint " << *it << std::endl;

/1 given the list of unique identifiers, retrieve coPoints

/1 individually and store in a STL vector of CoPointPtr

Lps: : CoPoi nt PtrLi st coPoints;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
coPoi nt s. push_back (geom >get CoPoint (*it));

Determining the Ppoints of a Structure Object

The following code returns the number of Ppoint objects contained by the
Structure object ‘geom’, lists the unique identifiers of the Ppaint objects,
and then retrieves them individually.

/1 find how many ppoints are in the Structure object

Lps:: Ui nt 32 ppoi nt Count;

ppoi nt Count = geom >nunber & Ppoints ();

std::cout << "Nunber of Ppoints: " << ppoint Count
<< std::endl;

/1 get unique identifiers of the ppoints in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsCOf Ppoints ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Ppoint " << *it << std::endl;

/1 given the list of unique identifiers, retrieve ppoints
/1 individually and store in a STL vector of PpointPtr

64 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Lps: : Ppoi nt PtrList ppoints;
for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
ppoi nts. push_back (geom >get Ppoint (*it));

Determining the Pcurves of a Structure Object

The following code returns the number of Pcurve objects contained by the
Structure object ‘geom’, lists the unique identifiers of the Pcurve objects,
and then retrieves them individually.

/1 find how many pcurves are in the Structure object

Lps:: Ui nt 32 pcurveCount;

pcurveCount = geom >nunber Of Pcurves ();

std::cout << "Nunber of Pcurves: " << pcurveCount
<< std::endl;

/1 get unique identifiers of the pcurves in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsOf Pcurves ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Pcurve " << *it << std::endl;

/1 given the list of unique identifiers, retrieve pcurves

/1 individually and store in a STL vector of PcurvePtr

Lps:: PcurvePtrLi st pcurves;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
pcurves. push_back (geom >get Pcurve (*it));

Determining the Surfaces of a Structure Object

The following code returns the number of Surface objects contained by
the Structure object ‘geom’, lists the unique identifiers of the Surface
objects, and then retrieves them individually.

/1 find how many surfaces are in the Structure object

Lps:: U nt32 surfaceCount;

surfaceCount = geom >nunber O Surfaces ();

std::cout << "Nunmber of Surfaces: " << surfaceCount
<< std::endl;

/1 get unique identifiers of the surfaces in the

/1 Structure and print them

Lps: : Uni quel dLi st ui dLi st = geom >get Ui dsOf Surfaces ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Surface " << *it << std::endl;

/1 given the list of unique identifiers, retrieve surfaces

/1 individually and store in a STL vector of SurfacePtr

Lps:: SurfacePtrList surfaces;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
surfaces. push_back (geom >getSurface (*it));

Determining the Contents of a LEAPS CommonView
Object

A LEAPS CommonView is currently composed of CommonView objects
and TopologicalView objects. It also has of Property objects,

DRAFT 65 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

PropertyGroup objects, Material objects, and MaterialGroup objects. If
‘commonView’ is a CommonView that has been retrieved from a
Structure, the contents of the CommonView object can be queried and
retrieved.

Determining the Properties of a CommonView Object

The following code returns the number of Property objects contained by
the CommonView object ‘commonView’, lists the unique identifiers of the
Property objects, and then retrieves them individually.

/1 find how many properties are in the ConmonVi ew obj ect

Lps:: Ui nt32 propertyCount;

propertyCount = conmmonVi ew >nunber Of Properties ();

std::cout << "Number of Properties: " << propertyCount
<< std::endl;

/1 get unique identifiers of the properties in the CormonVi ew and

/1 print them

Lps: : Uni quel dLi st ui dLi st = commonVi ew >get Ui dsOf Properties ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Property " << *it << std::endl;

/1 given the list of unique identifiers, retrieve properties

/1 individually and store in a STL vector of PropertyPtr

Lps:: PropertyPtrList properties;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
properties. push_back (conmmonVi ew >get Property (*it));

Determining the PropertyGroups of a CommonView Object

The following code returns the number of PropertyGroup objects
contained by the CommonView object ‘commonView’, lists the unique
identifiers of the PropertyGroup objects, and then retrieves them
individually.

/1 find how many propertyG oups are in the CommonVi ew obj ect

Lps:: U nt32 propertyG oupCount;

propertyG oupCount = comonVi ew >nunber O PropertyG oups ();

std::cout << "Nunber of PropertyGoups: " << propertyG oupCount
<< std::endl;

/1 get unique identifiers of the propertyGoups in the
/1 CommonVi ew and print them
Lps: : Uni quel dLi st ui dLi st = conmonVi ew >get Ui dsOf Propert yG oups

();
Lps:: UniqueldList::iterator it;
for (it = uidList.begin () ; it !'=uidList.end () ; ++it)

std::cout << "PropertyGoup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve propertyG oups

/1 individually and store in a STL vector of PropertyG oupPtr

Lps:: PropertyG oupPtrLi st propertyG oups;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
propertyG oups. push_back (conmonVi ew >get PropertyG oup (*it));

66 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Determining the Materials of a CommonView Object

The following code returns the number of Material objects contained by
the CommonView object ‘commonView’, lists the unique identifiers of the
Material objects, and then retrieves them individually.

/1 find how many materials are in the ConmonVi ew obj ect

Lps:: Ui nt32 material Count;

mat eri al Count = comronVi ew >nunber Of Materials ();

std::cout << "Number of Materials: " << material Count
<< std::endl;

/1 get unique identifiers of the materials in the CommonVi ew and

/1 print them

Lps: : Uni quel dLi st ui dLi st = commonVi ew >get Ui dsOf Materials ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Material " << *it << std::endl;

/1 given the list of unique identifiers, retrieve materials

/1 individually and store in a STL vector of Material Ptr

Lps:: Material PtrList material s;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
mat eri al s. push_back (comonVi ew >get Material (*it));

Determining the MaterialGroups of a CommonView Object

The following code returns the number of MaterialGroup objects
contained by the CommonView object ‘commonView’, lists the unique
identifiers of the MaterialGroup objects, and then retrieves them
individually.

/1 find how many material G oups are in the CommonVi ew obj ect

Lps:: U nt32 material G oupCount;

mat eri al G oupCount = comonVi ew >nunber O Mat eri al G oups () ;

std::cout << "Nunber of Material Goups: " << material G oupCount
<< std::endl;

/1 get unique identifiers of the naterial Goups in the
/1 CommonVi ew and print them
Lps: : Uni quel dLi st ui dLi st = commonVi ew >get Ui dsOf Mat eri al G oups

();
Lps::UniqueldList::iterator it;
for (it = uidList.begin () ; it !'= uidList.end () ; ++it)

std::cout << "Material Goup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve material G oups
/1 individually and store in a STL vector of Material GoupPtr
Lps:: Material GoupPtrLi st material Goups;
for (it = uidList.begin () ; it !'= uidList.end () ; ++it)

mat eri al Groups. push_back (commonVi ew >get Material Goup (*it));

Determining the CommonViews of a CommonView Object

The following code returns the number of CommonView objects
contained by the CommonView object ‘commonView’, lists the unique
identifiers of the CommonView objects, and then retrieves them
individually.

/1 find how many commonViews are in the ComonVi ew obj ect

67 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Lps:: U nt 32 commonVi ewCount ;

conmonVi ewCount = conmonVi ew >nunber Of ComonVi ews () ;

std::cout << "Number of ConmonViews: " << comonVi ewCount
<< std::endl;

/1 get unique identifiers of the cormonViews in the

/1 ConmmonVi ew and print them

Lps: : Uni quel dLi st ui dLi st = comonVi ew >get Ui dsOf CommonVi ews () ;

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "CommonView " << *it << std::endl;

/1 given the list of unique identifiers, retrieve comonVi ews

/1 individually and store in a STL vector of ConmonVi ewPtr

Lps: : ConmonVi ewPt r Li st conmonVi ews;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
conmonVi ews. push_back (comonVi ew >get CommonVi ew (*it));

Determining the TopologicalViews of a CommonView
Object

The following code returns the number of TopologicalView objects
contained by the CommonView object ‘commonView’, lists the unique
identifiers of the TopologicalView objects, and then retrieves them
individually.

/1 find how many topol ogi cal Views are in the ConmonVi ew obj ect
Lps:: Ui nt32 topol ogi cal Vi enCount ;
t opol ogi cal Vi emCount = comonVi ew >nunber O Topol ogi cal Views ();
std::cout << "Nunber of Topol ogical Views: "

<< topol ogi cal Vi enCount << std::endl;

/1 get unique identifiers of the topological Views in the
/1 CommonVi ew and print them
Lps: : Uni quel dLi st ui dLi st = commonVi ew >get Ui dsOf Topol ogi cal Vi ews

();
Lps::UniqueldList::iterator it;
for (it = uidList.begin () ; it !'= uidList.end () ; ++it)

std::cout << "Topological View" << *it << std::endl;

/1 given the list of unique identifiers, retrieve topol ogical Vi ews
/1 individually and store in a STL vector of Topol ogi cal Vi ewPtr
Lps: : Topol ogi cal Vi ewPtrLi st topol ogi cal Vi ews;
for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
{

t opol ogi cal Vi ews. push_back

(comonVi ew >get Topol ogi cal View (*it));

}

Determining the CommonViews that Use the CommonView
Object

The following code returns the number of CommonView objects that are
used by the CommonView object ‘commonView', lists the unique
identifiers of these CommonView objects, and then retrieves them
individually.

/1 find how many CommonVi ews that use the ComonVi ew obj ect
Lps:: U nt 32 vi ewCount;

68 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

vi ewCount = comonVi ew >nunber O ConmonVi ewsUsi ngComonVi ew () ;
std::cout << "Nunber of CommonViews: " << vi ewCount
<< std::endl;

/1 get unique identifiers of the propertyGoups in the

/1 CommonVi ew and print them

Lps: : Uni quel dLi st ui dLi st;

ui dLi st = comonVi ew >get Ui dsOf CormonVi ewsUsi ngConmonVi ew () ;

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it != uidList.end ()
std::cout << "CommonView " << *it << std::endl;

++it)

/1 given the list of unique identifiers, retrieve ComonVi ews
/1 individually and store in a STL vector of ConmonVi ewPtr
Lps: : ConmonVi ewPt r Li st vi ews;
for (it = uidList.begin () ; it !=uidList.end () ; ++it)
{

vi ews. push_back

(commonVi ew >get CommonVi ewUsi ngCommonVi ew (*it));

}

Determining the Contents of a LEAPS TopologicalView
Object

A LEAPS TopologicalView is currently a Solid, Face or Solid that has
Property objects, PropertyGroup objects, Material objects, and
MaterialGroup objects. If ‘topologicalView' is a TopologicalView that has
been retrieved from a Structure, the contents of the TopologicalView
object can be queried and retrieved.

Determining the Properties of a TopologicalView Object

The following code returns the number of Property objects contained by
the TopologicalView object ‘topologicalView’, lists the unique identifiers of
the Property objects, and then retrieves them individually.

/1 find how many properties are in the Topol ogi cal Vi ew obj ect
Lps:: U nt32 propertyCount;
propertyCount = topol ogi cal Vi ew >nunber O Properties ();
std::cout << "Number of Properties: " << propertyCount

<< std::endl;

/1 get unique identifiers of the properties in the

/1 Topol ogi cal View and print them

Lps: : Uni quel dLi st ui dLi st;

ui dLi st = topol ogi cal Vi ew >get Ui dsOf Properties ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
std::cout << "Property " << *it << std::endl;

/1 given the list of unique identifiers, retrieve properties

/1 individually and store in a STL vector of PropertyPtr

Lps:: PropertyPtrList properties;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
properties. push_back (topol ogical Vi ew>get Property (*it));

DRAFT 69 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Determining the PropertyGroups of a TopologicalView
Object

The following code returns the number of PropertyGroup objects
contained by the TopologicalView object ‘topologicalView’, lists the
unique identifiers of the PropertyGroup objects, and then retrieves them
individually.

/1 find how many propertyG oups are in the Topol ogi cal Vi ew obj ect

Lps:: U nt32 propertyG oupCount;

propertyG oupCount = topol ogi cal Vi ew >nunber O PropertyG oups ();

std::cout << "Nunber of PropertyGoups: " << propertyG oupCount
<< std::endl;

/1 get unique identifiers of the propertyGoups in the

/| Topol ogi cal Vi ew and print them

Lps: : Uni quel dLi st ui dLi st = topol ogi cal Vi ew

>get Ui dsOf PropertyGroups ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "PropertyGoup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve propertyG oups
/1 individually and store in a STL vector of PropertyG oupPtr
Lps:: PropertyG oupPtrList propertyG oups;
for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
{

propertyG&G oups. push_back

(topol ogi cal Vi ew >get PropertyGroup (*it));

}

Determining the Materials of a TopologicalView Object

The following code returns the number of Material objects contained by
the TopologicalView object ‘topologicalView’, lists the unique identifiers of
the Material objects, and then retrieves them individually.

/1 find how many materials are in the Topol ogi cal Vi ew obj ect
Lps:: U nt32 material Count;
mat eri al Count = topol ogi cal Vi ew >nunber O Materials ();
std::cout << "Nunber of Materials: " << material Count

<< std::endl;

/1 get unique identifiers of the materials in the

/1 Topol ogi cal Vi ew and print them

Lps: : Uni quel dLi st ui dLi st;

ui dLi st = topol ogi cal Vi ew >get Ui dsOf Materials ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Material " << *it << std::endl;

/1 given the list of unique identifiers, retrieve materials

/1 individually and store in a STL vector of Material Ptr

Lps:: Material PtrList naterials;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
nmat eri al s. push_back (topol ogi cal Vi ew>getMaterial (*it));

70 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Determining the MaterialGroups of a TopologicalView
Object

The following code returns the number of MaterialGroup objects
contained by the TopologicalView object ‘topologicalView’, lists the
unique identifiers of the MaterialGroup objects, and then retrieves them
individually.

/1 find how many material G oups are in the Topol ogi cal Vi ew obj ect

Lps:: U nt32 material GoupCount;

mat eri al G oupCount = topol ogi cal Vi ew >nunber Of Mat eri al Groups ();

std::cout << "Nunber of Material Goups: " << material G oupCount
<< std::endl;

/1 get unique identifiers of the naterial Goups in the

/| Topol ogi cal Vi ew and print them

Lps: : Uni quel dLi st ui dLi st = topol ogi cal Vi ew

>get Ui dsOf Mat eri al Groups ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Material Goup " << *it << std::endl;

/1 given the list of unique identifiers, retrieve material G oups
/1 individually and store in a STL vector of Material GoupPtr
Lps:: Material GoupPtrLi st material Goups;
for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
{

mat eri al &G oups. push_back

(topol ogi cal Vi ew >get Material Goup (*it));

}

Determining the Leaps Object Type of a TopologicalView
Object

The following code determines whether the TopologicalView object is a
Solid, Face, or Solid, retrieves the LEAPS object that represents the
TopologicalView, and prints the unique identifiers of both objects.

/1 find type of LEAPS object that represents the

/'l Topol ogi cal Vi ew obj ect

if (topol ogi cal Vi ew >obj ect Type () == Lps:: SolidObject)
{

Lps::SolidPtr solid = topol ogi cal View>getSolid ();
std::cout << "Topol ogical View " << topol ogi cal Vi ew >uni quel d ()
<< " is Solid " << solid->uniqueld () << std::endl;

}
else if (topol ogical Vi ew >object Type () == Lps:: Facej ect)
{
Lps:: FacePtr face = topol ogi cal Vi ew >get Face ();
std::cout << "Topol ogical View " << topol ogi cal Vi ew >uni quel d ()
<< " is Face " << face->uniqueld () << std::endl;

}

if (topol ogi cal Vi ew >obj ect Type () == Lps:: Surfacebject)
Lps:: SurfacePtr surface = topol ogi cal Vi ew >get Surface ();
std::cout << "Topol ogical View " << topol ogi cal Vi ew >uni quel d ()

<< " is Surface " << surface->uniqueld ()
<< std::endl;

71 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Determining the CommonViews that use the
TopologicalView Object

The following code returns the number of CommonView objects that use
the TopologicalView object ‘topologicalView', lists the unique identifiers of
the CommonView objects, and then retrieves them individually.

/1 find how many CommonVi ews that use the Topol ogi cal Vi ew obj ect
Lps:: Ui nt32 vi ewCount;

vi ewCount =
t opol ogi cal Vi ew >nunber O ConmonVi ewsUsi ngTopol ogi cal View ();
std::cout << "Nunber of CommonViews: " << viewCount << std::endl;

/1 get unique identifiers of the CormopnViews that use the
/1 Topol ogi cal View and print them
Lps: : Uni quel dLi st ui dLi st;
ui dLi st =
t opol ogi cal Vi ew >get U dsOf CormpnVi ewsUsi ngTopol ogi cal View ();
Lps:: UniqueldList::iterator it;
for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "ConmmonView " << *jit << std::endl;

/1 given the list of unique identifiers, retrieve ComonVi ews
/1 individually and store in a STL vector of ConmonVi ewPtr
Lps: : ConmonVi ewPt r Li st conmonVi ews;
for (it = uidList.begin () ; it !=uidList.end () ; ++it)
{

commonVi ews. push_back

(t opol ogi cal Vi ew >get Topol ogi cal View (*it));

}

Determining the Contents of a LEAPS Solid Object

DRAFT

A LEAPS Solid object is bounded by an OrientedClosedShell object. This
object is the outer boundary of the Solid. The Solid object may also have
zero or more OrientedClosedShell objects that define the voids in the
Solid object. If ‘solid’ is a Solid that has been retrieved from a Structure,
the contents of the Solid object can be queried and retrieved.

Determining the Outershell of a Solid Object

The following code returns the OrientedClosedShell’'s unique identifier
that is the outer boundary of the Solid and then retrieves it.

/1 get unique identifiers of the outershell and print it
std::string uid = solid->getU dO QuterShell ();
std::cout << "Solid " << solid->uniqueld ()

<< "has OientedC osedShell " << uid

<< "as an outer shell" << std::endl;

// retrieve the outer shell of the Solid

Lps:: Ori ent edd osedShel | Ptr outer Shel | ;
out er Shel | = solid->getQuterShell ();

72 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Determining the Voids of a Solid Object

The following code returns the number of OrientedClosedShell objects
that are voids in the Solid object ‘solid’, lists the unique identifiers of these
OrientedClosedShell objects, and then retrieves them individually.

/1 find how many voids are in the Solid object

Lps:: Ui nt 32 voi dCount;

voi dCount = sol i d->nunber & Voi dShel Is ();

std::cout << "Number of Void Shells: " << voi dCount
<< std::endl;

/1 get unique identifiers of the void shells in the Solid

/1 and print them

Lps: : Uni quel dLi st ui dLi st = solid->getU dsO VoidShells ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Void Shell " << *it << std::endl;

/1 given the list of unique identifiers, retrieve void shells
/1 individually and store in a STL vector of
/1 OrientedC osedShel | Ptr
Lps:: Orientedd osedShel | PtrList voi dShells;
for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
voi dShel I s. push_back (solid->getVoidShell (*it));

Determining the TopologicalView that Represents the Solid
Object

If the Solid object, ‘solid,’ is represented by a TopologicalView, the
following code returns that TopologicalView object.

/1 if Topol ogi cal View exists, retrieve that Topol ogi cal Vi ew
/1 and print its unique id
if (solid->doesTopol ogi cal Vi enExi st ())
{
Lps: : Topol ogi cal Vi ewPtr vi ew,
vi ew = sol i d->get Topol ogi cal View ();
std::cout << "Topol ogical View " << view >uniqueld ()
<< " represents Solid " << solid->uniqueld ()
<< std::endl;

Determining the Contents of a LEAPS
OrientedClosedShell Object

DRAFT

A LEAPS OrientedClosedShell object is bounded by one or more Face
objects that form a closed shell. The OrientedClosedShell object is
oriented such that all face normals are either pointing inward or outward.
If ‘shell’ is an OrientedClosedShell that has been retrieved from a
Structure, the contents of the OrientedClosedShell object can be queried
and retrieved.

73 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Determining the Orientation of an OrientedClosedShell
Object

The following code determines the orientation of the OrientedClosedShell
object ‘shell.’

/1 determine orientation of OientedC osedShell and print it
Lps:: Orientati onEnum ori ent ed;
oriented = shell->orientation ();
if (oriented == Lps::QutwardOrientation)
std::cout << "Orientation is outward." << std::endl;

else if (oriented == Lps::InwardOientation)
std::cout << "Orientation is inward." << std::endl;
el se

std::cout << "Orientation is unknown." << std::endl;

Determining the Faces of an OrientedClosedShell Object

The following code returns the number of Face objects that compose the
OrientedClosedShell object ‘shell’, lists the unique identifiers of these
Face objects, and then retrieves them individually.

/1 find how many faces are in the OientedC osedShel | object
Lps:: Ui nt32 faceCount;
faceCount = shell->nunmber O Faces ();
std::cout << "Number of Faces: " << faceCount
<< std::endl;

/1 get unique identifiers of the faces in the

/1 OrientedC osedShell and print them

Lps: : Uni quel dLi st ui dLi st = shell->get Ui dsCf Faces ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Face " << *it << std::endl;

/1 given the list of unique identifiers, retrieve faces

/1 individually and store in a STL vector of FacePtr

Lps: : FacePtrlList faces;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
faces. push_back (shell->getFace (*it));

Determining the Solids that Use the OrientedClosedShell
Object

If the OrientedClosedShell object, ‘shell,” is used by a Solid, the following
code lists the unique identifiers of the Solid objects that use ‘shell,” and
then retrieves them individually.

/1 find how many solids are used by the OientedC osedShel | object
Lps:: Ui nt32 solidCount;
sol i dCount = shel | - >nunber O Sol i dsUsi ngOri ent edCl osedShel | () ;
std::cout << "Nunber of Solids Using Oientedd osedShell: "

<< sol i dCount << std::endl;

/1 get unique identifiers of the solids used by the

/1l OrientedC osedShell and print them

Lps: : Uni quel dLi st ui dLi st;

ui dLi st = shel |l ->get Ui dsO Sol i dsUsi ngOri ent edCl osedShel | () ;
Lps:: UniqueldList::iterator it;

74 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide
for (it = uidList.begin () ; it = uidList.end () ; ++it)
std::cout << "Solid Used By OrientedC osedShel|: " << *ijt

<< std::endl;
}

/1 given the list of unique identifiers, retrieve solids
/1 individually and store in a STL vector of SolidPtr
Lps:: SolidPtrList solids;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
{
sol i ds. push_back
(shel |l - >get Sol i dUsi ngOri ent edCl osedShel | (*it));
}

Determining the Contents of a LEAPS Face Object

DRAFT

A LEAPS Face object is bounded by an EdgeLoop object. This object is
the outer boundary of the Face. The Face object may also have zero or
more EdgeLoop objects that define the holes in the Face object. If ‘face’
is a Face that has been retrieved from a Structure, the contents of the
Face object can be queried and retrieved.

Determining the Orientation of an Face Object

The following code determines the orientation of the Face object ‘face.’

/1 determine orientation of Face and print it
Lps:: Orientati onEnum ori ent ed;
oriented = face->orientation ();

if (oriented == Lps:: QutwardOrientation)
std::cout << "Orientation is outward." << std::endl;
else if (oriented == Lps::InwardOrientation)

std::cout << "Orientation is inward." << std::endl;
el se
std::cout << "Orientation is unknown." << std::endl;

Determining the Outer Loop of a Face Object

The following code returns the EdgelLoop’s unique identifier that is the
outer boundary of the Face and then retrieves it.

/1 get unique identifiers of the outerloop and print it
std::string uid = face->get U dO Qut erLoop ();
std::cout << "Solid " << solid->uniqueld ()

<< "has EdgelLoop " << uid

<< "as an outer |oop" << std::endl;

/1 retrieve the outer loop of the face
Lps: : EdgeLoopPt r out er Loop;
out er Loop = face->get QuterLoop ();

Determining the Inner Loops of a Face Object

The following code returns the number of EdgeLoop objects that
represent holes in the Face object ‘face’, lists the unique identifiers of
these EdgelLoop objects, and then retrieves them individually.

/1 find how many edgelLoops are in the Face object

75 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

DRAFT

LEAPS V2 User’s Guide

Lps:: Ui nt32 edgelLoopCount;

edgeLoopCount = face->nunber O | nner Loops ();

std::cout << "Nunber of I|nner Loops: " << edgelLoopCount
<< std::endl;

/1 get unique identifiers of the edgeLoops in the

/1 Face and print them

Lps: : Uni quel dLi st ui dLi st = face->get Ui dsO | nner Loops ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "EdgelLoop " << *it << std::endl;

/1 given the list of unique identifiers, retrieve edgelLoops

/1 individually and store in a STL vector of EdgeLoopPtr

Lps: : EdgeLoopPtrLi st edgelLoops;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
edgeLoops. push_back (face->getlnnerLoop (*it));

Determining the OrientedClosedShells that Use the Face
Object

If the Face object, ‘face,’ is used by an OrientedClosedShell, the following
code lists the unique identifiers of the OrientedClosedShell objects that
use ‘face,” and then retrieves them individually.

/1 find how many shells are used by the Face object

Lps:: Ui nt32 shel | Count;

shel | Count = face->nunber & Ori ent edCl osedShel | sUsi ngFace ();

std::cout << "Nunber of Oientedd osedShells Using Face: "
<< shel | Count << std::endl;

/1 get unique identifiers of the shells used by the

/1 Face and print them

Lps: : Uni quel dLi st ui dLi st;

ui dLi st = face->get Ui dsOf Ori ent edd osedShel | sUsi ngFace ();
Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)

std::cout << "Orientedd osedShell Used By Face: " << *it
<< std::endl;
}

/1 given the list of unique identifiers, retrieve shells
/1 individually and store in a STL vector of
/1 OrientedC osedShel | Ptr
Lps:: OrientedC osedShel I PtrList shells;
for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
shel | s. push_back (face->getOrientedC osedShel | Usi ngFace (*it));

Determining the TopologicalView that Represents the Face
Object

If the Face object, ‘face,’ is represented by a TopologicalView, the
following code returns that TopologicalView object.

/1 if Topol ogi cal View exists, retrieve that Topol ogi cal Vi ew
/1 and print its unique id
if (face->doesTopol ogi cal Vi ewExi st ())

{
Lps: : Topol ogi cal Vi ewPtr view,

76 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

vi ew = face- >get Topol ogi cal View ();

std::cout << "Topol ogical View " << view >uniqueld ()
<< " represents Face " << face->uniqueld ()
<< std::endl;

}

Determining the Surface the Face Object Is On

If the Face object, ‘face,” the Surface object that the face in on can be
retrieved by the following code.

/'l retrieve surface that face lies on and print its unique id
Lps:: SurfacePtr surface = face->getSurface ();
std::cout << "Face " << face->uniqueld ()

<< " lies on Surface " << surface->uniqueld ()

<< std::endl;

Determining the Contents of a LEAPS EdgeLoop Object

DRAFT

A LEAPS EdgelLoop object is composed of one or more Edge objects that
form a closed loop. The EdgelLoop object is oriented such that the loop is
either counter clockwise or clockwise. If ‘edgelLoop’ is an EdgeLoop that

has been retrieved from a Structure, the contents of the EdgeLoop object
can be queried and retrieved.

Determining the Orientation of an EdgeLoop Object

The following code determines the orientation of the EdgelLoop object
‘edgeLoop.’

/1 determine orientation of EdgeLoop and print it
Lps:: Orientati onEnum ori ent ed;
oriented = edgelLoop->orientation ();

if (oriented == Lps::CounterC ockwi seOrientation)
std::cout << "Orientation is counter clockw se." << std::endl;
else if (oriented == Lps::C ockw seOrientation)

std::cout << "Orientation is clockwi se." << std::endl;
el se
std::cout << "Orientation is unknown." << std::endl;

Determining the Edges of an EdgeLoop Object

The following code returns the number of Edge objects that compose the
EdgelLoop object ‘edgelLoop’, lists the unique identifiers of these Edge
objects, and then retrieves them individually.

/1 find how many edges are in the EdgelLoop obj ect
Lps:: U nt 32 edgeCount;
edgeCount = edgelLoop->nunber O Edges ();
std::cout << "Nunmber of Edges: " << edgeCount
<< std::endl;

/1 get unique identifiers of the edges in the

/| EdgeLoop and print them

Lps: : Uni quel dLi st ui dLi st = edgelLoop->get Ui dsCOf Edges () ;

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
std::cout << "Edge " << *it << std::endl;

77 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

/1 given the list of unique identifiers, retrieve edges

/1 individually and store in a STL vector of EdgePtr

Lps:: EdgePtrLi st edges;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
edges. push_back (edgelLoop->get Edge (*it));

Determining the Faces that Use the EdgeLoop Object

If the EdgeLoop object, ‘edgelLoop,’ is used by a Face, the following code
lists the unique identifiers of the Face objects that use ‘edgelLoop,” and
then retrieves them individually.

/1 find how many faces are used by the EdgeLoop object
Lps:: U nt32 faceCount;
faceCount = edgelLoop->nunmber O FacesUsi ngEdgeLoop ();
std::cout << "Nunber of Faces Using EdgelLoop: "

<< faceCount << std::endl;

/1 get unique identifiers of the faces used by the

/| EdgeLoop and print them

Lps: : Uni quel dLi st ui dLi st;

ui dLi st = edgelLoop- >get Ui dsOf FacesUsi ngEdgeLoop () ;

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)

std::cout << "Face Used By EdgelLoop: " << *it
<< std::endl;

}

/1 given the list of unique identifiers, retrieve faces

/1 individually and store in a STL vector of FacePtr

Lps:: FacePtrLi st faces;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
faces. push_back (edgelLoop->get FaceUsi ngEdgeLoop (*it));

Determining the Contents of a LEAPS Edge Object

A LEAPS Edge object is an oriented segment of a Pcurve object. Itis
defined by a start Ppoint object and an end Ppoint object. If ‘edge’ is an
Edge that has been retrieved from a Structure, the contents of the Edge
object can be queried and retrieved.

Determining the Start Point of an Edge Object

For the Edge object ‘edge’, the following code lists the unique identifier of
the Ppoint object that starts ‘edge,’ and then retrieve this Ppoint.

/1 get unique identifier of the start Ppoint of the edge

/1 and print it

std::string uid = edge->getU dO StartPoint ();

std::cout << "Ppoint " << *it << " starts Edge
<< edge->uni queld () << std::endl;

/1 retrieve start Ppoint object for edge
Lps::PpointPtr startPt = edge->getStartPoint ();

DRAFT 78 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

Determining the End Point of an Edge Object

For the Edge object ‘edge’, the following code lists the unique identifier of
the Ppoint object that ends ‘edge,’ and then retrieve this Ppoint.

/1 get unique identifier of the end Ppoint of the edge
/1 and print it
std::string uid = edge->get U dO EndPoi nt ();
std::cout << "Ppoint " << *jt << " ends Edge "
<< edge->uni queld () << std::endl;

/1 retrieve end Ppoint object for edge
Lps:: Ppoi ntPtr endPt = edge->get EndPoint ();

Determining the Pcurve that the Edge Object Lies on

For the Edge object ‘edge’, the following lists the unique identifier of the
Pcurve object the edge lies on, and then retrieve it.

/1 get unique identifier of the Pcurve of the edge

/1 and print it

std::string uid = edge->get U dOf Pcurve ();

std::cout << "Edge " << edge->uniqueld () << " lies on Pcurve "
<< *jit << std::endl;

/1 retrieve Pcurve object for edge
Lps:: PcurvePtr pcrv = edge->get Pcurve ();

Determining the Surface that the Edge Object Lies on

For the Edge object ‘edge’, the following lists the unique identifier of the
Surface object the edge lies on, and then retrieve it.

/1 get unique identifier of the Surface of the edge

/1 and print it

std::string uid = edge->get U dO Surface ();

std::cout << "Edge " << edge->uniqueld () << " lies on Surface
<< *it << std::endl;

/'l retrieve Surface object for edge
Lps:: SurfacePtr surf = edge->getSurface ();

Determining the CoEdge that the Edge Object Is A Part Of

If the Edge object, ‘edge,’ is part of a CoEdge object, the following code
list the unique identifier that CoEdge object and retrieves it.

/1 get unique identifier of CoEdge of the edge
/1 and print it

std::string uid = edge->get U dOf CoEdge ();

if (uid.length () == 0)

std::cout << "Edge " << edge->uniqueld ()
<< " is Not part of CoEdge." << std::endl;
}

el se
std::cout << "Edge " << edge->uniqueld ()

<< " is part of CoEdge " << uid << std::endl;
/1 retrieve CoEdge object for edge

DRAFT 79 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Lps: : CoEdgePtr coEdge = edge->get CoEdge ();
}

Determining the EdgelLoops that Use the Edge Object

If the Edge object, ‘edge,’ is used by an EdgelLoop, the following code
lists the unique identifiers of the EdgeLoop objects that use ‘edge,’ and
then retrieves them individually.

/1 find how many edgelLoops are used by the Edge object
Lps:: Ui nt 32 edgelLoopCount;
edgeLoopCount = edgelLoop->nunber O EdgeLoopsUsi ngEdge ();
std::cout << "Nunber of EdgelLoops Using Edge: "

<< edgelLoopCount << std::endl;

/1 get unique identifiers of the edgelLoops used by the

/1 Edge and print them

Lps: : Uni quel dLi st ui dLi st;

ui dLi st = edgelLoop- >get Ui dsOf EdgeLoopsUsi ngEdge () ;

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "EdgelLoop Used By Edge: " << *it << std::endl;

/1 given the list of unique identifiers, retrieve edgelLoops

/1 individually and store in a STL vector of EdgelLoopPtr

Lps: : EdgeLoopPtrLi st edgelLoops;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
edgelLoops. push_back (edgelLoop->get EdgeLoopUsi ngEdge (*it));

Determining the Contents of a LEAPS CoEdge Object

DRAFT

A LEAPS CoEdge object is composed of two or more Edge objects that
are logically coincident. If ‘coEdge’ is an CoEdge that has been retrieved
from a Structure, the contents of the CoEdge object can be queried and
retrieved.

Determining the Edges of a CoEdge Object

The following code returns the number of Edge objects that compose the
CoEdge object ‘coEdge’, lists the unigue identifiers of these Edge objects,
and then retrieves them individually.

/1 find how many edges are in the CoEdge object

Lps:: Ui nt 32 edgeCount;

edgeCount = coEdge- >nunber Of Edges () ;

std::cout << "Nunber of Edges: " << edgeCount
<< std::endl;

/1 get unique identifiers of the edges in the

/1 CoEdge and print them

Lps: : Uni quel dLi st ui dLi st = coEdge->get U dsO Edges ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
std::cout << "Edge " << *it << std::endl;

/1 given the list of unique identifiers, retrieve edges

/1 individually and store in a STL vector of EdgePtr

Lps: : EdgePtrLi st edges;

for (it = uidList.begin () ; it !=uidList.end () ; ++it)
edges. push_back (coEdge->get Edge (*it));

80 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Determining the Contents of a LEAPS Ppoint Object

DRAFT

A LEAPS Ppoint object is a parametric point on a Pcurve object. A Ppoint
may start zero, one, or two Edge objects and end zero, one, or two Edge
objects. Additionally, a Ppoint object may be part of a CoPoint object. If
‘ppoint’ is a Ppoint that has been retrieved from a Structure, the contents
of the Ppoint object can be queried and retrieved.

Determining the Edges the Ppoint Object Starts and Ends

The following code illustrates how to retrieve the Edges that the Ppoint
object ‘ppoint’ starts and ends.

/1 find how many edges the Ppoint object starts

Lps:: U nt 32 startEdgeCount;

st art EdgeCount = ppoi nt - >nunber O Edgesl Start ();

std::cout << "Ppoint " << ppoint->uniqueld () << " starts "
<< startEdgeCount << " Edges." << std::endl;

/1 find how many edges the Ppoint object ends

Lps:: Ui nt 32 endEdgeCount ;

endEdgeCount = ppoi nt - >nunber O Edgesl End () ;

std::cout << "Ppoint " << ppoint->uniqueld () << ends
<< endEdgeCount << " Edges." << std::endl;

/1 get unique identifiers of the edges the Ppoint starts
Lps: : Uni quel dLi st ui dLi st = ppoi nt->get U dsOf Edgesl Start ();
Lps:: UniqueldList::iterator it;
for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Ppoint " << ppoint->uniqueld () << " starts "
<< " Edge " << *it << std::endl;

/1 get unique identifiers of the edges the Ppoint ends
ui dLi st = ppoi nt->get U dsOf Edgesl End ();
for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Ppoint " << ppoint->uniqueld () << " ends "
<< " Edge " << *it << std::endl;

/1 retrieve edges in a STL vector of EdgePtr that
/1 the Ppoint starts
Lps:: EdgePtrLi st start Edges = ppoi nt->get Edgesl Start ();

/1 retrieve edges in a STL vector of EdgePtr that
/1 the Ppoint ends
Lps:: EdgePtrLi st endEdges = ppoi nt - >get Edgesl End ();

Determining the Pcurve Object that the Ppoint Object Lies

on

The following code illustrates how to retrieve the Pcurve object that the
Ppoint object ‘ppoint’ lies on.

/1 find Pcurve object that the Ppoint object lies on
Lps:: PcurvePtr pcrv = ppoint->getPcurve ();
std::cout << "Ppoint " << ppoint->uniqueld ()
<< " lies on Pcurve " << pcrv->uniqueld () << std::endl;

81 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

Determining the location of the Ppoint Object

The following code illustrates how to retrieve the location (i.e. the
parametric value) of the Ppoint object ‘ppoint.’.

/1 find the location of the Ppoint object on the Pcurve

Lps:: Real 64 | oc = ppoint->location ();

std::cout << "Ppoint " << ppoint->uniqueld () << " is located at "
<< loc << std::endl;

The following code illustrates how to retrieve the cartesian location of the
Ppoint object ‘ppoint.’

/1 find the cartesian location of the Ppoint object on the Pcurve
Lps:: Cartesi anLocati on cartesi anLoc;
cartesianLoc = ppoi nt->eval For Cartesi anLoc ();
std::cout << "Ppoint " << ppoint->uniqueld ()
<< " is located at (" << cartesianLoc.x() << ",
<< cartesianLoc.y() << ", "
<< cartesianLoc.z() << ")" << std::endl

The following code illustrates how to retrieve the pcurve location of the
Ppoint object ‘ppoint.’

/1 find the pcurve location of the Ppoint object on the Pcurve
Lps:: PcurvelLocation pcurvelLoc;

pcurvelLoc = ppoi nt->eval For PcurveLoc ();

std::cout << "Ppoint " << ppoint->uniqueld ()

<< " is located at s = " << pcurvelLoc.s() << ", u ="

<< pcurvelLoc.u() << ", v =" << pcurvelLoc.v()<< ", x ="
<< pcurveloc. x() <<", y =" << pcurveloc.y()

<<", z =" << pcurveLoc.z () << std::endl

Determining the CoPoint that the Ppoint Object is a Part of

If the Ppoint object, ‘ppoint,’ is part of a CoPoint object, the following code
list the unique identifier that CoPoint object and retrieves it.

/1 get unique identifier of CoPoint of the ppoint
/1 and print it

std::string uid = ppoint->getU dOf CoPoint ();

if (uid.length () == 0) // no CoPoint

std::cout << "Ppoint " << ppoint->uniqueld ()
<< " is Not part of CoPoint." << std::endl

}
el se
std::cout << "Ppoint " << ppoint->uniqueld ()
<< " is part of CoPoint " << uid << std::endl
/'l retrieve CoPoint object for ppoint
Lps: : CoPoi nt Ptr coPoi nt = ppoi nt->get CoPoi nt ();
}

Determining the Contents of a LEAPS CoPoint Object

DRAFT

A LEAPS CoPoint object is composed of two or more Ppoint objects that
are logically coincident. If ‘coPoint’ is an CoPoint that has been retrieved

82 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

from a Structure, the contents of the CoPoint object can be queried and
retrieved.

Determining the Ppoints of a CoPoint Object

The following code returns the number of Ppoint objects that compose the
CoPoint object ‘coPoint’, lists the unique identifiers of these Ppoint
objects, and then retrieves them individually.

/1 find how many Ppoints are in the CoPoint object

Lps:: Ui nt 32 ppoi nt Count;

ppoi nt Count = coPoi nt - >nunber O Ppoints ();

std::cout << "Nunber of Ppoints: " << ppointCount
<< std::endl;

/1 get unique identifiers of the Ppoints in the

/1 CoPoint and print them

Lps: : Uni quel dLi st ui dLi st = coPoi nt->get Ui dsOf Ppoi nts ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Ppoint " << *it << std::endl;

/1 given the list of unique identifiers, retrieve Ppoints

/1 individually and store in a STL vector of PpointPtr

Lps:: Ppoi nt PtrList ppoints;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
ppoi nts. push_back (coPoi nt->getPpoint (*it));

Determining the Cartesian location of the CoPoint Object

The following code illustrates how to retrieve the cartesian location of the
CoPoint object ‘coPoint.’

/1 find the cartesian location of the CoPoint object

Lps:: Cartesi anLocati on cartesi anLoc;

cartesianLoc = coPoint->location ();

std::cout << "CoPoint " << coPoint->uniqueld ()
<< " is located at (" << cartesianLoc.x() << ", "
<< cartesianLoc.y() << ",
<< cartesianLoc.z() << ")" << std::endl;

Determining the Contents of a LEAPS Pcurve Object

DRAFT

A LEAPS Pcurve object is a parametric spline curve on a Surface object.
The Pcurve object may also have zero or more Ppoint objects that are
mapped to it. If ‘pcurve’ is a Pcurve that has been retrieved from a
Structure, the contents of the Pcurve object can be queried and retrieved.

Determining the Surface that the Pcurve Object is Mapped

to

The following code returns the Surface’s unigue identifier that the Pcurve
object is mapped to and then retrieves it.

/1 get unique identifiers of the outershell and print it
std::string uid = pcurve->get Ui dOf Surface ();
std::cout << "Pcurve " << pcurve->uniqueld ()

<< "is mapped to Surface " << uid << std::endl;

83 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.

LEAPS V2 User’s Guide

/1 retrieve the Surface that the Pcurveis mapped to
Lps:: SurfacePtr surface;
surface = pcurve->get Surface ();

Determining the Ppoints that are Mapped to a Pcurve
Object

The following code returns the number of Ppoint objects that is mapped to
the Pcurve object ‘pcurve’, lists the unique identifiers of these Ppoint
objects, and then retrieves them individually.

/1 find how many Ppoints that are mapped to the Pcurve object
Lps:: Ui nt 32 ppoi nt Count;
ppoi nt Count = pcurve->nunber & MappedPpoi nts ();
std::cout << "Nunber of Mapped Ppoints: " << ppoint Count
<< std::endl;

/1 get unique identifiers of the Ppoints that are mapped

/1 to the Pcurve object and print them

Lps: : Uni quel dLi st ui dLi st = pcurve->get U dsO MappedPpoi nts ();

Lps:: UniqueldList::iterator it;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
std::cout << "Ppoint " << *it << std::endl;

/1 given the list of unique identifiers, retrieve Ppoints
/1 individually and store in a STL vector of PpointPtr
Lps: : Ppoi nt PtrLi st ppoints;

for (it = uidList.begin () ; it !'= uidList.end ()

;i)
ppoi nts. push_back (pcurve->get MappedPpoi nt (*it));

Determining the Contents of a LEAPS Surface Object

DRAFT

A LEAPS Surface object is a non-uniform rational b-spline representation
of a surface in Cartesian space. The Surface object may also have zero
or more Pcurve objects that are mapped to it. If ‘surface’ is a Surface that
has been retrieved from a Structure, the contents of the Surface object
can be queried and retrieved.

Determining the Pcurves that are Mapped to a Surface
Object

The following code returns the number of Pcurve objects that is mapped
to the Surface object ‘surface’, lists the unique identifiers of these Pcurve
objects, and then retrieves them individually.

/1 find how many Pcurves that are mapped to the Surface object
Lps:: Ui nt32 pcurveCount;
pcurveCount = surface->nunber O MappedPcurves ();
std::cout << "Nunber of Mapped Pcurves: " << pcurveCount
<< std::endl;

/1 get unique identifiers of the Pcurves that are mapped

/1 to the Surface object and print them

Lps: : Uni quel dLi st ui dLi st = surface->get U dsO MappedPcurves ();

Lps::UniqueldList::iterator it;

for (it = uidList.begin () ; it !'= uidList.end () ; ++it)
std::cout << "Pcurve " << *it << std::endl;

84 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

/1 given the list of unique identifiers, retrieve Pcurves

/1 individually and store in a STL vector of PcurvePtr

Lps:: PcurvePtrLi st pcurves;

for (it = uidList.begin () ; it !'=uidList.end () ; ++it)
pcurves. push_back (surface->get MappedPcurve (*it));

Determining the TopologicalView that Represents the
Surface Object

If the Surface object, ‘surface,’ is represented by a TopologicalView, the
following code returns that TopologicalView object.

/1 if Topol ogi cal View exists, retrieve that Topol ogi cal Vi ew
/1 and print its unique id
if (surface->doesTopol ogi cal Vi ewExi st ())

{
Lps: : Topol ogi cal Vi ewPtr view,
vi ew = surface->get Topol ogi cal View ();
std::cout << "Topol ogical View " << view >uniqueld ()
<< " represents Surface " << surface->uniqueld ()
<< std::endl;
}

DRAFT 85 02 Apr 1999

